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Objectives: Electrocardiography (ECG)-based diagnosis by experts cannot maintain uniform quality because individual dif-
ferences may occur. Previous public databases can be used for clinical studies, but there is no common standard that would 
allow databases to be combined. For this reason, it is difficult to conduct research that derives results by combining databases. 
Recent commercial ECG machines offer diagnoses similar to those of a physician. Therefore, the purpose of this study was to 
construct a standardized ECG database using computerized diagnoses. Methods: The constructed database was standardized 
using Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) and Observational Medical Outcomes Part-
nership–common data model (OMOP-CDM), and data were then categorized into 10 groups based on the Minnesota classi-
fication. In addition, to extract high-quality waveforms, poor-quality ECGs were removed, and database bias was minimized 
by extracting at least 2,000 cases for each group. To check database quality, the difference in baseline displacement according 
to whether poor ECGs were removed was analyzed, and the usefulness of the database was verified with seven classification 
models using waveforms. Results: The standardized KURIAS-ECG database consists of high-quality ECGs from 13,862 pa-
tients, with about 20,000 data points, making it possible to obtain more than 2,000 for each Minnesota classification. An arti-
ficial intelligence classification model using the data extracted through SNOMED-CT showed an average accuracy of 88.03%. 
Conclusions: The KURIAS-ECG database contains standardized ECG data extracted from various machines. The proposed 
protocol should promote cardiovascular disease research using big data and artificial intelligence.
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I. Introduction

Electrocardiograms (ECGs) are the most basic test used to 
diagnose or screen cardiac diseases [1-3]. Many studies have 
recently been conducted to advance the pre-processing and 
diagnostic algorithms of ECG signals using artificial intelli-
gence (AI) and deep learning technologies. For these studies, 
accurate and consistent annotations of ECG diagnosis and 
classification, as well as sufficient and high-quality ECG data 
of various ECG diagnoses and classifications, are very im-
portant [4,5]. Several ECG databases (DBs) have been intro-
duced, and recently published datasets contain many more 
ECG data than earlier datasets [6-17] (Table 1). Despite the 
existing massive ECG DBs, ECG diagnosis and classification 
are not standardized, and their distributions are skewed. For 
this reason, the development of algorithms combining vari-
ous ECG DBs is limited. Moreover, because the data capacity 
of a 12-lead ECG is very considerable, it is important to con-
struct an efficient dataset that can be effectively studied by 
researchers who may have limited infrastructure.
 Prior datasets used their own ECG diagnoses and clas-
sifications. In most small ECG datasets, there are five to 10 
diagnostic labels. Zheng et al. [16] recently released a large 
ECG dataset consisting of 10,646 ECGs annotated with 11 

cardiac rhythms and 56 cardiovascular conditions redefined 
through human labeling. The PTB-XL dataset contains 71 
ECG statements in accordance with the SCP-ECG standard 
[17] and also provides cross-references for other ECG anno-
tation systems, including an ECG REFID identifier, CDISC 
code, and DICOM code. These annotation systems focus 
more on data operations, such as data transmission and stor-
age, than on suitability for use by computational processing. 
The Systematized Nomenclature of Medicine Clinical Terms 
(SNOMED CT), which was adopted for the present dataset, 
has gained popularity as a global standard terminology sys-
tem to improve interoperability by covering all areas of the 
medical field [18]. In the United States, the Health IT Stan-
dards Committee has recommended using SNOMED CT for 
health information exchange. Several medical clinical DBs 
have recently been built using SNOMED CT, which makes it 
easier to construct a DB that can be merged with other clini-
cal data [19].
 Modern ECG machines generate digitized waveform data, 
computerized ECG parameter measurements, and diagnos-
tic statements. The computerized interpretation algorithms 
of each ECG machine vendor adopt standard ECG measure-
ment and diagnosis classification systems, such as the Min-
nesota code manual [20]. Although verification by experts 

Table 1. Related electrocardiography datasets

Dataset
Number of  

subjects

Number of  

ECG
Lead Record

Original  

frequency (Hz)

Diagnosis  

category

Abnormality 

(%)

AHA [6] N/A 154 2 3 hr 250 8 100
European ST-T [7] 79 90 2 120 min 250 2 100
Long-term ST [8] 80 86 1 21, 24 hr 250 1 100
MIT-BIH Arrhythmia [9] 47 48 2 30 min 360 1 100
MIT-BIH Noise Stress 

Test [10]
15 15 1 12 half-hour,  

3 half-hour
360 1 100

STAFF-III [11] 104 108 12 Various  
conditions

1,000 1 100

PTB Diagnostic ECG [12] 290 549 15 2 min 1,000 9 81
St Petersburg [13] 32 75 12 30 min 257 1 100
T-wave Alternans  

Challenge [14]
N/A 100 12 2 min 500 1 100

LUDB [15] N/A 200 12 10 s 500 6 19
Zheng et al. [16] 10,646 10,646 12 10 s 500 68 37
PTB-XL [17] 18,885 21,837 12 10 s 400 71 57
Proposed 13,862 20,000 12 10 s 500 10 76
Clinical summary, including age; gender; diagnosis; and (where applicable) data on medical history, medication and interventions, 
coronary artery pathology, ventriculography, echocardiography, and hemodynamics. 
ECG: electrocardiography, N/A: not applicable.
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is the gold-standard method to confirm ECG diagnoses, hu-
man validation cannot avoid intra- and inter-observer vari-
ability, and maintaining data consistency has been noted as a 
challenge [4]. Automated ECG interpretation is often used in 
studies that construct big data sets, such as large population-
based cohort studies. Moreover, previous studies have shown 
that the performance of recent computerized ECG inter-
pretations is comparable to that of expert physicians, with 
correct classification percentages of 91.3% for the computer 
program and 96.0% for cardiologists, respectively [21,22]. 
ECG statements in existing ECG datasets, which are mostly 
relatively small, were labeled by physicians. The PTB-XL da-
taset, which is the largest ECG dataset, contains a mixture of 
ECG statements labeled by physicians and ECG statements 
automatically interpreted by an ECG machine.
 The purpose of this study was to construct a high-quality, 
well-defined, and evenly distributed ECG dataset of suf-
ficient size for research compiled into a practically usable 
DB. In this study, a pair of strategies were used to construct 
a high-quality DB; the first sought to establish a standard-
ized system using standard vocabularies and Concept_IDs 
of SNOMED CT and Observational Medical Outcomes 
Partnership–common data model (OMOP-CDM) to over-
come differences in the diagnoses made by different devices, 
while the second pursued the removal of poor-quality ECGs 
to prevent unnecessary data from being included in the DB. 
Various types of noise were also removed through a denois-
ing process. Through this approach, 147 detailed ECG diag-
noses were classified into 10 categories, and a DB containing 
at least 2,000 ECG data points for each category was con-
structed.

II. Methods

1. Database Construction
ECG signals were measured using equipment from GE (Bos-
ton, MA, USA) and Philips (Eindhoven, the Netherlands) 
in hospital settings, and all signals were ultimately saved in 
the clinical information system (CIS; INFINITT Health-
care Co., Seoul, South Korea) in XML file format. A total of 
434,938 standard 12-lead ECGs were obtained from the CIS 
of Korea University Anam Hospital between January 1, 2017, 
and December 31, 2020. The study protocol was approved 
by the Institutional Review Board of the Korea University 
Anam Hospital (No. 2021AN0261), and the need for written 
informed consent was waived because of the retrospective 
study design with minimal risk to participants. The study 
complied with all relevant ethical regulations and the prin-

ciples of the Declaration of Helsinki.
 The digitized waveform data from the 12-lead ECG ma-
chine were automatically trimmed to 10 seconds with 500 
Hz. The patient’s basic information was input through the 
ECG machine by a nurse. The ECG data were stored in 
XML format on the CIS server and included metadata with 
each patient’s basic personal information. The XML format 
contained basic examination information, technical data, 
eight ECG parameters, diagnosis statements, and waveform 
data. The basic examination information included the pa-
tient registration number, examination date and time, and 
examination equipment, as well as technical data such as the 
sampling rate, amplitude, and filtering frequency. A standard 
Python module (ElementTree XML API) was used to parse 
the data in the XML file of each ECG, and all associated pro-
gramming source code was written in Python version 3.6.0.

2. ECG Diagnosis Standardization and Classification
The ECG machines automatically generated ECG diag-
noses and ancillary descriptions through the approved 
computerized algorithm of each vendor (GE Medical and 
Philips Medical Systems). The ECG findings, including the 
ECG diagnosis and ancillary descriptions, were present in 
free text format in the “statement” section of the original 
XML files. These free texts were converted to the terminol-
ogy of SNOMED CT and its cross-referenced terminology 
of OMOP-CDM [19,23]. OMOP-CDM is a standard data 
schema with a vocabulary [23]. The OMOP-CDM vocabu-
lary adopts existing vocabularies rather than using de novo 
constructions; for example, the OMOP-CDM concept name 
“ECG normal” (Concept_ID: 4065279) originated from the 
SNOMED CT name “electrocardiogram normal (finding)” 
(SNOMED code 164854000). Both OMOP-CDM Concept_
ID 4065279 and SNOMED code 164854000 define a “normal 
ECG.” Standard terminology mapping for the ECG diagnosis 
was performed using web-based software, which incorporat-
ed an integrated algorithm using cosine similarity and a rule-
based hierarchy (available at cdal.korea.ac.kr/ECG2CDM). 
The conversion accuracy was 99.9%. Using this software, 
free text in statements and comments in ECG XML files was 
converted into OMOP-CDM codes and terms, which could 
also be easily converted to SNOMED CT codes and terms 
using the concept table found at http://athena.ohdsi.org. 
 ECG diagnoses were further classified based on the Minne-
sota code manual, which has been used in many epidemio-
logical studies and clinical trials. This system has also been 
reported to be predictive of future cardiovascular events and 
mortality [20]. The Minnesota classification includes nine 
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categories, as follows: QRS axis deviation, high amplitude 
R wave, arrhythmia, atrioventricular (AV) conduction de-
fect, ventricular conduction defect, Q and QS pattern, ST 
junction and segment depression, T wave item, and miscel-
laneous. Some ECG diagnoses were unclassified. Thus, the 
present study used 10 classification categories of the Minne-
sota code manual, including “unclassified.” The Minnesota 
code manual also provided a list of minor and major code 
abnormalities that could be used for a subgroup analysis. 
Two professional cardiologists labeled the Minnesota code 
classification categories and abnormalities in terms of 147 
detailed ECG diagnoses for the present dataset. 
 Figure 1 shows the distribution of the overall ECG diagno-
sis/classification; notably, the ECG diagnosis scheme within 
each Minnesota category was skewed. As shown in Table 
2, the most common ECG diagnosis was “normal ECG” 
(41.51%) followed by “ECG: sinus rhythm” (5.42%) and 
“ECG: sinus bradycardia” (5.34%). The difference between 
the most common ECG diagnosis and the second most com-
mon (sinus rhythm) was more than 30 percentage points.
 In this study, DB quality was improved by removing data 
containing severe noise based on machine-interpreted di-
agnoses. ECG signals contain common types of noise such 
as AC interference and baseline wander. However, data with 
patient movement, electrode attachment problems, and 
sudden increases in amplitude are unsuitable for research. 
Therefore, to improve the data quality, the present dataset 
excluded ECG data with either Concept_name (Concept_
ID) “poor ECG quality” (OMOP-CDM code: 4088345) or 
“suspect arm ECG leads reversed” (OMOP-CDM code: 
4088344). The original statements mapped onto “poor ECG 
quality,” or “suspect arm ECG leads reversed” are shown in 
Table 3.
 ECG cases were selected from the entire dataset through 

a total of three steps to improve the DB quality. In the first 
step, ECGs matching the ECG statement “poor ECG qual-
ity” or “suspect arm ECG lead reversed” were removed from 
the source data (n = 32,164). Second, ECG cases containing 
missing data for any ECG leads or sampling rates less than 
500 Hz were also excluded (n = 7,644). In the third step, 
ECG data from patients’ first visit to a hospital were selected 
from instances where there were multiple ECGs from the 
same patients, and 237,536 cases were excluded. ECGs from 
the first hospital visit were preferred to help reduce the con-
founding effect of subsequent data susceptible to other exter-
nal factors, such as medications, and to reduce confounding 
and bias in the data due to treatment.
 Among the remaining 157,594 ECG cases, all cases with 
fewer than 100 data of each ECG diagnosis between January 
1, 2017, and December 31, 2020 were included. Then, 2,000 
ECG data points (1 ECG per subject) corresponding to each 
of the 10 Minnesota classifications were consecutively select-
ed from January 1, 2017 onwards. Finally, ECGs from 13,862 
patients were included in the dataset.

3. Waveform Data Denoising 
The KURIAS-ECG DB was constructed using raw infor-
mation obtained from the ECG equipment and systems. 
KURIAS is an abbreviation for the Korea University Research 
Institute for Medical Bigdata Science, and KURIAS-ECG re-
fers to the 12-lead ECG DB constructed by this research insti-
tution. The ECG signal acquired from ECG equipment con-
tains complex noise due to the device’s data transmission/
reception, the location of electrodes, the patient’s movement, 
muscle activity, and human body differences. Therefore, a 
preprocessing step was applied to the ECG signals to reduce 
low-quality data caused by noise (Figure 2). 
 In general, a signal containing unnecessary noise is ac-

Normal sinus
rhythm

Left axis deviation
Voltage (decreased)

RBBB

Myocardial ischemia
(lateral)

LVH

Myocardial
infarction (inferior)

AV block

T wave (abnormal)

Sinus rhythm
(bradycardia)

Level 1 (inner ring)

Level 2 (middle ring)

Level 3 (outer ring)
- Detailed ECG diagnosis

Unclassified
Arrhythmia
T wave item
AV conduction defect
Q and QS pattern
High amplitude R wave
ST junction and segment depression
Ventricular conduction defect
Miscellaneous
QRS axis deviation

Unclassified
Major
Minor

Figure 1.   Graphical summary of the 
distribution of ECG diagno-
ses and classifications in the 
original source data of the 
ECG dataset (n = 434,938). 
Note that the distribution 
of ECG diagnoses is highly 
skewed. ECG: electrocardi-
ography, LVH: left ventricu-
lar hypertrophy, RBBB: right 
bundle branch block, AV: 
atrioventricular.
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quired due to various factors during an ECG examination. 
For diagnostic accuracy through monitoring, it is essential to 
remove the noise generated in the ECG signal. Butterworth 
filters are among the most commonly used signal-processing 
methods in the field of biomedical engineering [24]. In this 
study, the cut-off frequency was set from 0.05 to 150 Hz to 
minimize the distortion of the ST segment and to maintain 
the post-potential information of the QRS wave [25]. The 
baseline wander is the noise of low-frequency components 
caused by body movements, electrode movements, and 
breathing. In this study, the asymmetrically reweighted 
penalized least squares smoothing (arPLS) method was ap-
plied to overcome the baseline fluctuation problem due to 
the low-frequency components. Conventional polynomial 
methods have been proposed as effective techniques for re-
moving baseline wander [26]. However, the arPLS method is 
effectively used to calculate a baseline for signals with vari-
ous signal spectra, such as ECGs, by repeatedly changing the 
weights while estimating the baseline [27].

4. Validation of the Waveform Database 
To demonstrate that the KURIAS-ECG DB was objectively 
of high quality, a pair of validation methods were employed. 
The first aimed to quantitatively verify whether noisy data 
were reduced due to the removal of poor-quality ECGs by 
analyzing the waveform difference between the DB from 
which poor-quality ECGs were removed and the DB without 
the removal of such ECGs. Second, to verify the effect of the 
diagnosis standardized by SNOMED-CT and Concept_ID, 
the possibility of standardized diagnoses was verified by ex-
tracting data for seven diagnoses according to Concept_ID 
and developing a classification AI model for each group. 
 Poor-quality ECGs were removed using the corresponding 
Concept_ID. To verify the quality of the waveforms con-
stituting the DB, signal-processing analysis was performed 
on the waveform of lead II, which is most often used for 
rhythm [28]. All ECG waveforms have baseline wander. In 
this study, the baseline wander present in the ECG waveform 
was acquired through a signal-processing method, and both 
data sets were quantitatively compared using the difference 
between the highest and smallest baseline wander values.

Table 2. ECG diagnoses and classifications (top 10)

Concept name Concept_ID SNOMED_name
SNOMED_

code

Minnesota clas-

sification

Abnor-

mality

Propor-

tion (%)

ECG normal,  
ECG: normal  
sinus rhythm

4065279, 
4142265

Electrocardiogram normal (find-
ing), Electrocardiogram: normal 
sinus rhythm (finding)

164854000, 
426285000

Unclassified Unclassi-
fied

41.51

ECG: sinus rhythm 4145513 Electrocardiogram: sinus rhythm 
(finding)

426783006 Unclassified Unclassi-
fied

5.42

ECG: sinus  
bradycardia

4138456 Electrocardiogram: sinus brady-
cardia (finding)

426177001 Arrhythmia Minor 5.34

EKG: T-wave  
abnormal

4065390 Electrocardiographic T-wave 
abnormal (finding)

164934002 T wave item Minor 5.11

Atrioventricular  
block

316135 Atrioventricular block (disorder) 233917008 AV conduction 
defect

Major 2.37

EKG: left ventricle  
hypertrophy

4065282 Electrocardiographic left ventricle 
hypertrophy (finding)

164873001 High amplitude 
R wave

Minor 2.27

First-degree atrioven-
tricular block

314379 First-degree atrioventricular block 
(disorder)

270492004 AV conduction 
defect

Major 2.12

Prolonged QT interval 4008859 Prolonged QT interval (finding) 111975006 Unclassified Major 2.01
Left-axis deviation 4215406 Left-axis deviation (finding) 39732003 QRS axis  

deviation
Minor 1.83

ECG: atrial  
fibrillation

4064452 Electrocardiographic atrial fibril-
lation (finding)

164889003 Arrhythmia Major 1.72

ECG: electrocardiography, SNOMED CT: Systematized Nomenclature of Medicine Clinical Terms, EKG: Elektrokardiogramm, AV: 
atrioventricular.
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 In addition, to confirm the usefulness of diagnostic stan-
dardization, a single classification model for seven diagnoses 
was developed based on the ECG waveforms. In this study, 
the residual blocks-based network (ResNet) was used as a 
model to develop seven diagnostic classification models. In 
this study, ResNet was used to develop seven diagnostic clas-
sification models. ResNet has been effectively used to classify 
cardiovascular diseases using ECG waveforms in previous 
studies [29]. As input variables of the model, the waveforms 
of lead I, lead II, and V2 and min-max normalization were 
applied. To check the data quality of various diagnoses, sev-
en diagnoses (normal sinus rhythm, sinus bradycardia, left-
axis deviation, atrial fibrillation, first-degree atrioventricular 
block, Wolff-Parkinson-White syndrome, and prolonged QT 
interval) were defined as target variables. All diagnoses were 
classified based on the Concept_ID used for standardization.
 The dataset was divided into subsets for training, valida-
tion, and testing at a 6:2:2 ratio, and the accuracy of the 
model was evaluated through 10-fold cross-validation. An 
Adam optimizer was adopted, and the learning rate was set 
to 0.0001. The accuracy of the model was evaluated by cal-

culating the average of the accuracy, recall, and F1-score.

III. Results

The established DB consisted of 13,862 patients, includ-
ing 7,840 men and 6,022 women. Detailed characteristics 
of the patients and ECGs are shown in Table 4. Most of the 
ECG signals were measured using GE (88.43%). The average 
number of Minnesota code categories per ECG test was 2 ± 
1.05, and the average number of ECG diagnoses per ECG 
test was 3 ± 1.49. The three most-common ECG diagnoses 
within each Minnesota code category are presented in Table 
4. The ECG diagnosis within each category was less skewed 
than that in the original dataset. In addition, ECG diagnoses 
with a low diagnostic rate, such as indeterminate axis, were 
also included in a relatively high proportion.
 The overall distribution of the constructed DB is shown in 
Figure 3. Since the same number of ECG data points were 
selected for each Minnesota code classification, the data-
composition ratio of ECG diagnoses with low frequency, 
such as QRS axis deviation, increased. Thus, the distribution 

Table 3. Exclusion criteria

Concept name Vendor Statement

Poor ECG quality GE Poor data quality, interpretation may be adversely affected
Acquisition hardware fault prevents reliable analysis, carefully check ECG 

record before interpreting
Baseline wander
Current undetermined rhythm precludes rhythm comparison, needs review
Electrode noise
Muscle tremor
Poor data quality
Poor data quality in current ECG precludes serial comparison

Philips All 12 leads are missing
Artifact in lead(s)
Artifact in lead(s) and baseline wander in lead(s)
Baseline wander in lead(s)
Incomplete analysis due to missing data in precordial lead(s)
Missing lead(s)
Missing lead(s) and partial lead(s)
Poor-quality data - please repeat ECG!

Suspect arm ECG  
leads reversed

GE Suspect arm lead reversal, interpretation assumes no reversal
Arm lead reversal

Philips Left arm and left leg electrode reversal
Probable extremity electrode reversal
Right and left arm electrode reversal
Right arm and left leg electrode reversal
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of ECG diagnoses for the 10 Minnesota categories was less 
skewed than the original data for abnormalities classified as 
normal, minor, and major.

1. Database Content
The data attributes of the constructed ECG DB are described 
in Table 5. The ECG DB consisted of four sections—namely, 
general metadata, analyzed parameters, diagnosis state-
ments, and standard and waveform data. 
 The general metadata section included person ID, sex, age, 
acquisition data, acquisition time, and information from 
the device manufacturer. For this study, person ID was a 
randomly assigned number for pseudonymization differ-
ent from the hospital’s patient ID. The analysis parameters 
included heart rate, PR interval, ARS duration, QT inter-
val, QT corrected, P axis, R axis, and T axis, which were 
automatically analyzed during a post-processing period by 
machine. “NULL” indicated parameters not calculated au-
tomatically in the waveform. The diagnosis statements and 
standards section consisted of the diagnosis statements au-
tomatically analyzed by the post-processing system and the 
results of mapping the OMOP-CDM vocabulary, SNOMED-
CT codes, and Minnesota classifications corresponding to 
the diagnosis statements. The Concept_ID was obtained by 

analyzing the similarity between the diagnosis statement 
and the OMOP-CDM vocabulary and automatically map-
ping the result as a SNOMED-CT code. The Concept_name 
was the clinical vocabulary for each Concept_ID. Because a 
single ECG signal can have multiple diagnostic statements, 
multiple Concept _ID and Concept _name results can exist 
for that ECG. In addition, the diagnosis statement was also 
mapped to SNOMED-CT because the SNOMED_code and 
SNOMED_name were mapped to Concept_ID and Con-
cept_name, respectively. The Minnesota code classified as 
abnormality was obtained by standardizing the diagnosis by 
categorizing the Concept_ID according to the Minnesota 
classification. The waveform data consisted of 12 ECG sig-
nals, and noise was removed through signal processing.

2. Validation of Waveforms Using the Baseline Gap
The difference between the datasets with and without poor-
quality ECGs was analyzed by calculating the magnitude 
of the baseline variability of the waveforms acquired under 
both conditions. The dataset of waveforms without poor-
quality ECGs had a narrow baseline displacement, as shown 
in Figure 4A, with an average of 44.54 μV (max, 244.11 μV; 
min, 7.70 μV). In contrast, the dataset including poor-quality 
ECGs had a wide baseline displacement, as shown in Figure 
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Figure 2. Preprocessing of an ECG waveform: (A) original wave-
form, (B) after bandpass filter, (C) after baseline filter. ECG, elec-
trocardiography.
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Table 4. Characteristics of the ECGs 

Total (n = 13,862) Men (n = 7,840) Women (n = 6,022)

Age (yr) 58.81 ± 20.12 56.94 ± 19.88 61.34 ± 20.17
Vendor 
   GE 12,258 (88.43) 6,899 (88.00) 5,359 (88.99)
   Philips 1,604 (11.57) 941 (12.00) 663 (11.01)
Number of Minnesota codes per ECG 2 ± 1.05 2 ± 1.06 2 ± 1.03
Number of ECG diagnoses per ECG 3 ± 1.49 3 ± 1.50 2 ± 1.47
Unclassified 
   Sinus rhythm 329 (16.45) 178 (8.90) 151 (7.55)
   Sinus arrhythmia 329 (16.45) 153 (7.65) 176 (8.80)
   QT interval (prolonged) 329 (16.45) 155 (7.75) 174 (8.70)
QRS axis deviation
   Left axis deviation 944 (47.20) 647 (32.35) 297 (14.85)
   Right axis deviation 943 (47.15) 472 (23.60) 471 (23.55)
   Indeterminate axis 110 (5.50) 66 (3.30) 44 (2.20)
High-amplitude R-wave
   LVH 859 (42.95) 564 (28.20) 295 (14.75)
   RVH 860 (43.00) 502 (25.10) 358 (17.90)
   Ventricular hypertrophy 281 (14.05) 203 (10.15) 78 (3.90)
Arrhythmia 
   Sinus rhythm (bradycardia) 119 (5.95) 64 (3.20) 55 (2.75)
   Atrial fibrillation 119 (5.95) 82 (4.10) 37 (1.85)
   Sinus rhythm (tachycardia) 119 (5.95) 61 (3.05) 58 (2.90)
AV conduction defect 
   AV block 164 (8.20) 107 (5.35) 57 (2.85)
   AV block (1st degree) 164 (8.20) 108 (5.40) 56 (2.80)
   PR interval (short) 164 (8.20) 79 (3.95) 85 (4.25)
Ventricular conduction defect 
   RBBB 205 (10.25) 129 (6.45) 76 (3.80)
   RBBB (incomplete) 205 (10.25) 144 (7.20) 61 (3.05)
   rSr pattern in V1 and V2 205 (10.25) 110 (5.50) 95 (4.75)
Q and QS pattern 
   Myocardial infarction (inferior) 205 (10.25) 117 (5.85) 88 (4.40)
   Myocardial infarction (septal) 205 (10.25) 145 (7.25) 60 (3.00)
   Myocardial infarction (anterior) 205 (10.25) 120 (6.00) 85 (4.25)
ST junction and segment depression 
   Myocardial ischemia (lateral) 297 (14.85) 152 (7.60) 145 (7.25)
   ST–T abnormality (non-specific) 297 (14.85) 120 (6.00) 177 (8.85)
   Myocardial ischemia (anterior) 297 (14.85) 97 (4.85) 200 (10.00)
T wave item 
   T wave (abnormal) 884 (44.20) 365 (18.25) 519 (25.95)
   T wave (inverted) 883 (44.15) 382 (19.10) 501 (25.05)
   T wave (flattened) 233 (11.65) 135 (6.75) 98 (4.90)

Continued on the next page.
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4B, with an average of 50.33 μV (min–max, 5.36–431.59 μV). 
As shown in Figure 4D, the baseline displacement of the 
dataset applying case sampling was statistically significantly 
lower than that of the dataset where case sampling was not 
applied (p < 0.01).

3. Validation of the Database Using Deep Learning
To verify the quality of the waveform data of the KURIAS-
ECG DB, classification models were developed using wave-
form data for seven diagnostic categories extracted based on 
Concept_ID. The deep learning model developed to verify 
the waveform quality of the DB showed an average accuracy 
of 88.03% in the classification model for seven categories. 
Furthermore, the average F1-score was 0.88, and the average 
values of precision and recall were 0.87 in both results. The 
lowest accuracy was obtained for the classification model for 
prolonged QT interval (82.25%), and the highest accuracy 
was obtained for the classification model for atrial fibrilla-
tion (90.84%) (Table 6).

IV. Discussion

The KURIAS-ECG DB represents a new type of DB constructed 
by standardizing various types of 12-lead ECGs and apply-
ing a method to extract high-quality data. To construct the 
KURIAS-ECG DB, a total of 434,938 12-lead ECGs acquired 
over 4 years at a general hospital were used. The KURIAS-
ECG DB overcomes the differences in diagnostic informa-
tion among devices by establishing a common management 
standard using Concept_ID. In addition, this DB is balanced 
by subdividing diagnostic information from 147 ECG diag-
noses into 10 categories using the Minnesota classification. 
As research on cardiac disease using AI is carried out, the 
importance of ECG waveforms is growing. In previous stud-
ies, AI models were developed to classify cardiovascular 
diseases, such as atrial fibrillation, arrhythmias, and heart 
failure based on ECG waveforms, and showed an accuracy 
of 85%–95% [29]. Moreover, Yoo et al. [30] applied ECG 
waveforms to an AI model to classify neurological diseases, 
such as Parkinson disease, that are accompanied by changes 
in cardiac movement. The Parkinson disease classification 
model using ECG waveforms achieved an 87% accuracy for 

Table 4. Continued

Total (n = 13,862) Men (n = 7,840) Women (n = 6,022)

Miscellaneous
   ST segment elevation 319 (15.95) 288 (14.40) 31 (1.55)
   P wave (abnormal) 319 (15.95) 143 (7.15) 176 (8.80)
   Voltage (decreased) 319 (15.95) 141 (7.05) 178 (8.90)
Values are presented as mean ± standard deviation or number (%). 
The 3 most-common ECG diagnoses comprising each Minnesota classification were used, abbreviated, and slightly modified to re-
duce space.
ECG: electrocardiography, AV: atrioventricular, RBBB: right bundle branch block, LVH: left ventricular hypertrophy, RVH: right 
ventricular hypertrophy.

Normal sinus rhythmLeft axis deviation

ST segment elevation

RBBB

Myocardial
ischemia
(lateral)

LVH

AV block T wave (abnormal)

Sinus rhythm
(bradycardia)

Level 1 (inner ring)

Level 2 (middle ring)

Level 3 (outer ring)
- Detailed ECG diagnosis

Unclassified
Arrhythmia
T wave item
AV conduction defect
Q and QS pattern
High amplitude R wave
ST junction and segment depression
Ventricular conduction defect
Miscellaneous
QRS axis deviation

Unclassified
Major
Minor

Figure 3.   Graphical summary of the 
distribution of ECG diag-
noses and classifications in 
the extracted source data 
of the original ECG dataset. 
Note that the distribution 
of ECG diagnoses is less 
skewed than in the original 
source data. ECG: electro-
cardiography, LVH: left ven-
tricular hypertrophy, RBBB: 
right bundle branch block, 
AV: atrioventricular.
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clinical patients, indicating its potential for future clinical 
application. Since the ECG waveform contains important 
information on the function of the heart, it is medical data 

that can be effectively used in AI research on heart-related 
diseases [29]. A 12-lead ECG measures the heart’s electrical 
activity by attaching 10 electrodes to the limbs and chest. 

Table 5. Data attributes 

Section Variables Data type Description

General metadata PersonID Varchar De-identified patient identifier
Gender Varchar Male, female
Age Float Age at recording in years
AcquisitionDate Date ECG recording date
AcquisitionTime Time ECG recording time
Device_manuf Varchar Acquisition device manufacturer

Analyzed parameters HeartRate Float Speed of heartbeat
PRInterval Float PR interval in msec
QRSDuration Float QRS duration in msec
QTInterval Float QT interval in msec
QTCorrected Float Corrected QT interval in msec
PAxis Float P axis
RAxis Float R axis
TAxis Float T axis

Diagnosis statements  
and standard

Statement Varchar Automatically interpreted diagnosis statement
Concept_ID Varchar The unique identifier of OHDSI OMOP-CDM vocabulary for each 

concept of ECG findings or disorders derived from SNOMED-CT
Concept_Name Varchar The name of Concept_ID in OHDSI OMOP-CDM vocabulary
SNOMED_Code Varchar The corresponding SNOMED-CT identifier for each concept of 

OHDSI OMOP-CDM vocabulary
SNOMED_Name Varchar The name of SNOMED_Code in SNOMED-CT
Minnesota Categorical The category corresponding to the Minnesota code classification 

system (2009) for each concept
Abnormality Categorical The category corresponding to the Minnesota code’s abnormality 

classification system for each concept
Waveform data Wave_I Varchar Waveform data of lead I

Wave_II Varchar Waveform data of lead II
Wave_III Varchar Waveform data of lead III
Wave_aVR Varchar Waveform data of aVR
Wave_aVL Varchar Waveform data of aVL
Wave_aVF Varchar Waveform data of aVF
Wave_V1 Varchar Waveform data of V1
Wave_V2 Varchar Waveform data of V2
Wave_V3 Varchar Waveform data of V3
Wave_V4 Varchar Waveform data of V4
Wave_V5 Varchar Waveform data of V5
Wave_V6 Varchar Waveform data of V6

ECG: electrocardiography, OHDSI: Observational Health Data Sciences and Informatics, OMOP: Observational Medical Outcomes 
Partnership, CDM: common data model, SNOMED CT: Systematized Nomenclature of Medicine Clinical Terms. 
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The types of noise that occur during this process include 
AC interference, muscle tremors, baseline wander, and mo-
tion artifacts. As this noise is not generated by the heart 
function, it can reduce the accuracy of the AI model. In ad-
dition, commercial 12-lead ECG machines used in medical 
institutions have different diagnosis systems provided by the 
machine depending on the manufacturer; for example, GE 
refers to normal signals as “normal sinus rhythm” or “normal 

ECG,” while Philips uses the term “sinus rhythm.” These dif-
ferences cause difficulties in extracting data in AI research 
that requires the use of big data, and these challenges must 
be resolved during the DB construction step. The KURIAS-
ECG DB presented in this study applied a standardization 
strategy using the OMOP-CDM international standard and a 
high-quality strategy to exclude poor-quality ECGs contain-
ing noise. This systematic DB construction process is effec-
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Figure 4.   Representative ECG waveform and baseline of (A) an excellent ECG and (B) a poor ECG. (C)The definition of the baseline 
and baseline displacement of ECG waveforms without poor ECG conditions and with poor ECG conditions. (D) Comparison 
of the difference in baseline displacement between datasets with or without poor ECG conditions (plus point, median; box, 
25%–75% range; whisker, 5th–95th percentiles).

Table 6. Performance of the classification models for seven diagnoses

Category Accuracy (%) F1-score Precision Recall

Normal sinus rhythm 88.33 0.88 0.91 0.85
Sinus bradycardia 87.90 0.88 0.87 0.88
Left axis deviation 88.84 0.88 0.86 0.90
Atrial fibrillation 90.84 0.91 0.91 0.91
First degree atrioventricular block 87.82 0.88 0.89 0.87
Wolff-Parkinson-White syndrome 90.22 0.95 0.84 0.87
Prolonged QT interval 82.25 0.82 0.83 0.82
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tive for cardiovascular disease AI research because it can ob-
tain large amounts of data while excluding unsuitable data. 
ECG waveforms stored in a tree-type XML format can be 
difficult to use directly in research due to their data format. 
However, the KURIAS-ECG approach in this study extracts 
and manages tree-type data in cell units, making it efficient 
in terms of storage space utilization and easy to convert to 
5,000 frames, which correspond to the original format. In 
the future, this approach will be a solution that can combine 
distributed ECG data and public DBs into a common DB 
through Concept_ID assignment, which is used as the stan-
dard system in KURIAS-ECG. This is expected to provide 
an environment for promoting research on cardiac disease 
using AI. The KURIAS-ECG DB is meaningful in that it 
is a high-quality DB of 12-lead ECGs, but there are limita-
tions in its usability, since it was released as a limited DB on 
an open data platform. Since this problem is shaped by the 
disclosure policies of the organization providing the data, 
various hurdles must be overcome to construct an open DB. 
Therefore, in this study, the construction process of a stan-
dardization DB and related code were disclosed so that each 
institution can build a standardized DB without disclosing 
data. The construction protocol of the KURIAS-ECG DB 
was published on PhysioNet, and the code used for database 
management system (DBMS) construction and noise re-
moval was shared through GitHub (https://github.com/KU-
RIAS).
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