![]() |
A Comparison of Intensive Care Unit Mortality Prediction Models through the Use of Data Mining Techniques
Sujin Kim, Woojae Kim, Rae Woong Park
Healthc Inform Res. 2011;17(4):232-243. Published online 2011 Dec 31 DOI: https://doi.org/10.4258/hir.2011.17.4.232
|
Citations to this article as recorded by
Operationalising AI ethics through the agile software development lifecycle: a case study of AI-enabled mobile health applications
Lameck Mbangula Amugongo, Alexander Kriebitz, Auxane Boch, Christoph Lütge
AI and Ethics.2025; 5(1): 227. CrossRef Identifying prognostic factors for survival in intensive care unit patients with SIRS or sepsis by machine learning analysis on electronic health records
Maximiliano Mollura, Davide Chicco, Alessia Paglialonga, Riccardo Barbieri, Nan Liu
PLOS Digital Health.2024; 3(3): e0000459. CrossRef Timely ICU Outcome Prediction Utilizing Stochastic Signal Analysis and Machine Learning Techniques with Readily Available Vital Sign Data
Shaodong Wang, Yiqun Jiang, Qing Li, Wenli Zhang
IEEE Journal of Biomedical and Health Informatics.2024; 28(9): 5587. CrossRef The development of a C5.0 machine learning model in a limited data set to predict early mortality in patients with ARDS undergoing an initial session of prone positioning
David M. Hannon, Jaffar David Abbas Syed, Bairbre McNicholas, Michael Madden, John G. Laffey
Intensive Care Medicine Experimental.2024;[Epub] CrossRef Development, validation, and feature extraction of a deep learning model predicting in-hospital mortality using Japan’s largest national ICU database: a validation framework for transparent clinical Artificial Intelligence (cAI) development
Euma Ishii, Nobutoshi Nawa, Satoru Hashimoto, Hidenobu Shigemitsu, Takeo Fujiwara
Anaesthesia Critical Care & Pain Medicine.2023; 42(2): 101167. CrossRef Use of Deep Learning for Continuous Prediction of Mortality for All Admissions in Intensive Care Units
Guangjian Zeng, Jinhu Zhuang, Haofan Huang, Mu Tian, Yi Gao, Yong Liu, Xiaxia Yu
Tsinghua Science and Technology.2023; 28(4): 639. CrossRef Prediction of motor function in patients with traumatic brain injury using genetic algorithms modified back propagation neural network: a data-based study
Hui Dang, Wenlong Su, Zhiqing Tang, Shouwei Yue, Hao Zhang
Frontiers in Neuroscience.2023;[Epub] CrossRef Dynamic predictions of postoperative complications from explainable, uncertainty-aware, and multi-task deep neural networks
Benjamin Shickel, Tyler J. Loftus, Matthew Ruppert, Gilbert R. Upchurch, Tezcan Ozrazgat-Baslanti, Parisa Rashidi, Azra Bihorac
Scientific Reports.2023;[Epub] CrossRef Wavelet based ensemble models for early mortality prediction using imbalance ICU big data
Babita Majhi, Aarti Kashyap
Smart Health.2023; 28: 100374. CrossRef Predictive Modeling Using Artificial Intelligence and Machine Learning Algorithms on Electronic Health Record Data
Michael J. Patton, Vincent X. Liu
Critical Care Clinics.2023; 39(4): 647. CrossRef Global research trends in artificial intelligence for critical care with a focus on chord network charts: Bibliometric analysis
Teng-Yun Cheng, Sam Yu-Chieh Ho, Tsair-Wei Chien, Willy Chou
Medicine.2023; 102(38): e35082. CrossRef CHARACTERIZATION OF MORTALITY PREDICTION: AN ENSEMBLE LEARNING ANALYSIS USING THE MIMIC-III DATASET
Anıl Burcu ÖZYURT SERİM
Journal of Scientific Reports-A.2023; (054): 364. CrossRef Machine Learning for Benchmarking Critical Care Outcomes
Louis Atallah, Mohsen Nabian, Ludmila Brochini, Pamela J. Amelung
Healthcare Informatics Research.2023; 29(4): 301. CrossRef An interpretable outcome prediction model based on electronic health records and hierarchical attention
Juan Du, Dajian Zeng, Zhao Li, Jingxuan Liu, Mingqi Lv, Ling Chen, Dan Zhang, Shouling Ji
International Journal of Intelligent Systems.2022; 37(6): 3460. CrossRef Ideal algorithms in healthcare: Explainable, dynamic, precise, autonomous, fair, and reproducible
Tyler J. Loftus, Patrick J. Tighe, Tezcan Ozrazgat-Baslanti, John P. Davis, Matthew M. Ruppert, Yuanfang Ren, Benjamin Shickel, Rishikesan Kamaleswaran, William R. Hogan, J. Randall Moorman, Gilbert R. Upchurch, Parisa Rashidi, Azra Bihorac, Henry Horng-S
PLOS Digital Health.2022; 1(1): e0000006. CrossRef The prediction power of machine learning on estimating the sepsis mortality in the intensive care unit
Mehtap Selcuk, Oguz Koc, A. Sevtap Kestel
Informatics in Medicine Unlocked.2022; 28: 100861. CrossRef Using deep learning with attention mechanism for identification of novel temporal data patterns for prediction of ICU mortality
Wendong Ge, Jin-Won Huh, Yu Rang Park, Jae-Ho Lee, Young-Hak Kim, Guohai Zhou, Alexander Turchin
Informatics in Medicine Unlocked.2022; 29: 100875. CrossRef Empirical evaluation of performance degradation of machine learning-based predictive models – A case study in healthcare information systems
Zachary Young, Robert Steele
International Journal of Information Management Data Insights.2022; 2(1): 100070. CrossRef Learning to predict in-hospital mortality risk in the intensive care unit with attention-based temporal convolution network
Yu-wen Chen, Yu-jie Li, Peng Deng, Zhi-yong Yang, Kun-hua Zhong, Li-ge Zhang, Yang Chen, Hong-yu Zhi, Xiao-yan Hu, Jian-teng Gu, Jiao-lin Ning, Kai-zhi Lu, Ju Zhang, Zheng-yuan Xia, Xiao-lin Qin, Bin Yi
BMC Anesthesiology.2022;[Epub] CrossRef Mortality prediction of patients in intensive care units using machine learning algorithms based on electronic health records
Min Hyuk Choi, Dokyun Kim, Eui Jun Choi, Yeo Jin Jung, Yong Jun Choi, Jae Hwa Cho, Seok Hoon Jeong
Scientific Reports.2022;[Epub] CrossRef The comparison of selected machine learning techniques and correlation matrix in ICU mortality risk prediction
Parnian Asgari, Mir Mohammad Miri, Fahimeh Asgari
Informatics in Medicine Unlocked.2022; 31: 100995. CrossRef Predictive performances of 6 data mining techniques for obstructive sleep apnea-hypopnea syndrome
Miao Luo, Yuan Feng, Jingying Luo, XiaoLin Li, JianFang Han, Taoping Li
Medicine.2022; 101(26): e29724. CrossRef Multilayer dynamic ensemble model for intensive care unit mortality prediction of neonate patients
Firuz Juraev, Shaker El-Sappagh, Eldor Abdukhamidov, Farman Ali, Tamer Abuhmed
Journal of Biomedical Informatics.2022; 135: 104216. CrossRef Artificial Intelligence, Sensors and Vital Health Signs: A Review
Sahalu Balarabe Junaid, Abdullahi Abubakar Imam, Aliyu Nuhu Shuaibu, Shuib Basri, Ganesh Kumar, Yusuf Alhaji Surakat, Abdullateef Oluwagbemiga Balogun, Muhammad Abdulkarim, Aliyu Garba, Yusra Sahalu, Abdullahi Mohammed, Yahaya Tanko Mohammed, Bashir Abuba
Applied Sciences.2022; 12(22): 11475. CrossRef Spanish Influenza Score (SIS): utilidad del Machine Learning en el desarrollo de una escala temprana de predicción de mortalidad en la gripe grave
Medicina Intensiva.2021; 45(2): 69. CrossRef A Dynamic Ensemble Learning Algorithm based on K-means for ICU mortality prediction
Chonghui Guo, Mucan Liu, Menglin Lu
Applied Soft Computing.2021; 103: 107166. CrossRef Outcomes prediction in longitudinal data: Study designs evaluation, use case in ICU acquired sepsis
Maya Schvetz, Lior Fuchs, Victor Novack, Robert Moskovitch
Journal of Biomedical Informatics.2021; 117: 103734. CrossRef Information Technology for Classification of Donosological and Pathological States Using the Ensemble of Data Mining Methods
O. KRYVOVA, L. KOZAK
Kibernetika i vyčislitelʹnaâ tehnika.2021; 2021(1(203)): 77. CrossRef Using nursing notes to improve clinical outcome prediction in intensive care patients: A retrospective cohort study
Kexin Huang, Tamryn F Gray, Santiago Romero-Brufau, James A Tulsky, Charlotta Lindvall
Journal of the American Medical Informatics Association.2021; 28(8): 1660. CrossRef Improving clinical outcome predictions using convolution over medical entities with multimodal learning
Batuhan Bardak, Mehmet Tan
Artificial Intelligence in Medicine.2021; 117: 102112. CrossRef Sequential Pattern Mining to Predict Medical In-Hospital Mortality from Administrative Data: Application to Acute Coronary Syndrome
Jessica Pinaire, Etienne Chabert, Jérôme Azé, Sandra Bringay, Paul Landais, Mihajlo Jakovljevic
Journal of Healthcare Engineering.2021; 2021: 1. CrossRef Artificial intelligence forecasting mortality at an intensive care unit and comparison to a logistic regression system
Beatriz Nistal-Nuño
Einstein (São Paulo).2021;[Epub] CrossRef Prediction of Surgery Control Parameters in Cardiology to Optimize the Emission Fraction Values with the Help of Neural Networks
O. Kryvova, L. Kozak, O. Kovalenko, L. Nenasheva
Kibernetika i vyčislitelʹnaâ tehnika.2021; 2021(4(206)): 54. CrossRef Artificial Intelligence and Surgical Decision-making
Tyler J. Loftus, Patrick J. Tighe, Amanda C. Filiberto, Philip A. Efron, Scott C. Brakenridge, Alicia M. Mohr, Parisa Rashidi, Gilbert R. Upchurch, Azra Bihorac
JAMA Surgery.2020; 155(2): 148. CrossRef Opportunities for machine learning to improve surgical ward safety
Tyler J. Loftus, Patrick J. Tighe, Amanda C. Filiberto, Jeremy Balch, Gilbert R. Upchurch, Parisa Rashidi, Azra Bihorac
The American Journal of Surgery.2020; 220(4): 905. CrossRef Predicting hospital mortality for intensive care unit patients: Time-series analysis
Aya Awad, Mohamed Bader-El-Den, James McNicholas, Jim Briggs, Yasser El-Sonbaty
Health Informatics Journal.2020; 26(2): 1043. CrossRef Comparing Logistic Regression Models with Alternative Machine Learning Methods to Predict the Risk of Drug Intoxication Mortality
YoungJin Choi, YooKyung Boo
International Journal of Environmental Research and Public Health.2020; 17(3): 897. CrossRef Predicting ICD-9 code groups with fuzzy similarity based supervised multi-label classification of unstructured clinical nursing notes
Tushaar Gangavarapu, Aditya Jayasimha, Gokul S. Krishnan, Sowmya Kamath S.
Knowledge-Based Systems.2020; 190: 105321. CrossRef Machine learning algorithm to predict mortality in patients undergoing continuous renal replacement therapy
Min Woo Kang, Jayoun Kim, Dong Ki Kim, Kook-Hwan Oh, Kwon Wook Joo, Yon Su Kim, Seung Seok Han
Critical Care.2020;[Epub] CrossRef A comparison of logistic regression models with alternative machine learning methods to predict the risk of in-hospital mortality in emergency medical admissions via external validation
Muhammad Faisal, Andy Scally, Robin Howes, Kevin Beatson, Donald Richardson, Mohammed A Mohammed
Health Informatics Journal.2020; 26(1): 34. CrossRef Using structured pathology data to predict hospital-wide mortality at admission
Mieke Deschepper, Willem Waegeman, Dirk Vogelaers, Kristof Eeckloo, Juan F. Orueta
PLOS ONE.2020; 15(6): e0235117. CrossRef Intensive Care Unit Mortality Prediction: An Improved Patient-Specific Stacking Ensemble Model
Nora El-Rashidy, Shaker El-Sappagh, Tamer Abuhmed, Samir Abdelrazek, Hazem M. El-Bakry
IEEE Access.2020; 8: 133541. CrossRef A New Hybrid Predictive Model to Predict the Early Mortality Risk in Intensive Care Units on a Highly Imbalanced Dataset
Ramin Ghorbani, Rouzbeh Ghousi, Ahmad Makui, Alireza Atashi
IEEE Access.2020; 8: 141066. CrossRef Comparison of Conventional Statistical Methods with Machine Learning in Medicine: Diagnosis, Drug Development, and Treatment
Hema Sekhar Reddy Rajula, Giuseppe Verlato, Mirko Manchia, Nadia Antonucci, Vassilios Fanos
Medicina.2020; 56(9): 455. CrossRef Leveraging hybrid biomarkers in clinical endpoint prediction
Maliazurina Saad, Ik Hyun Lee
BMC Medical Informatics and Decision Making.2020;[Epub] CrossRef Artificial intelligence and perioperative medicine
Elena G. BIGNAMI, Federico COZZANI, Paolo DEL RIO, Valentina BELLINI
Minerva Anestesiologica.2020;[Epub] CrossRef Feature Engineering for ICU Mortality Prediction Based on Hourly to Bi-Hourly Measurements
Ahmed Y. A. Amer, Julie Vranken, Femke Wouters, Dieter Mesotten, Pieter Vandervoort, Valerie Storms, Stijn Luca, Bart Vanrumste, Jean-Marie Aerts
Applied Sciences.2019; 9(17): 3525. CrossRef Data Science for Extubation Prediction and Value of Information in Surgical Intensive Care Unit
Tsung-Lun Tsai, Min-Hsin Huang, Chia-Yen Lee, Wu-Wei Lai
Journal of Clinical Medicine.2019; 8(10): 1709. CrossRef A novel GA-ELM model for patient-specific mortality prediction over large-scale lab event data
Gokul S. Krishnan, Sowmya Kamath S.
Applied Soft Computing.2019; 80: 525. CrossRef A Long Short-Term Memory Ensemble Approach for Improving the Outcome Prediction in Intensive Care Unit
Jing Xia, Su Pan, Min Zhu, Guolong Cai, Molei Yan, Qun Su, Jing Yan, Gangmin Ning
Computational and Mathematical Methods in Medicine.2019; 2019: 1. CrossRef The trauma severity model: An ensemble machine learning approach to risk prediction
Michael T. Gorczyca, Nicole C. Toscano, Julius D. Cheng
Computers in Biology and Medicine.2019; 108: 9. CrossRef Predicting in-hospital mortality of patients with acute kidney injury in the ICU using random forest model
Ke Lin, Yonghua Hu, Guilan Kong
International Journal of Medical Informatics.2019; 125: 55. CrossRef Improving mortality models in the ICU with high-frequency data
James Todd, Adrian Gepp, Brent Richards, Bruce James Vanstone
International Journal of Medical Informatics.2019; 129: 318. CrossRef Assessing the performance of genome-wide association studies for predicting disease risk
Jonas Patron, Arnau Serra-Cayuela, Beomsoo Han, Carin Li, David Scott Wishart, Joseph Devaney
PLOS ONE.2019; 14(12): e0220215. CrossRef Comparison of artificial neural network and logistic regression models for prediction of outcomes in trauma patients: A systematic review and meta-analysis
Soheil Hassanipour, Haleh Ghaem, Morteza Arab-Zozani, Mozhgan Seif, Mohammad Fararouei, Elham Abdzadeh, Golnar Sabetian, Shahram Paydar
Injury.2019; 50(2): 244. CrossRef DeepSOFA: A Continuous Acuity Score for Critically Ill Patients using Clinically Interpretable Deep Learning
Benjamin Shickel, Tyler J. Loftus, Lasith Adhikari, Tezcan Ozrazgat-Baslanti, Azra Bihorac, Parisa Rashidi
Scientific Reports.2019;[Epub] CrossRef Artificial neural networks improve and simplify intensive care mortality prognostication: a national cohort study of 217,289 first-time intensive care unit admissions
Gustav Holmgren, Peder Andersson, Andreas Jakobsson, Attila Frigyesi
Journal of Intensive Care.2019;[Epub] CrossRef VS-GRU: A Variable Sensitive Gated Recurrent Neural Network for Multivariate Time Series with Massive Missing Values
Qianting Li, Yong Xu
Applied Sciences.2019; 9(15): 3041. CrossRef Machine Learning Models of Survival Prediction in Trauma Patients
Cheng-Shyuan Rau, Shao-Chun Wu, Jung-Fang Chuang, Chun-Ying Huang, Hang-Tsung Liu, Peng-Chen Chien, Ching-Hua Hsieh
Journal of Clinical Medicine.2019; 8(6): 799. CrossRef Survival prediction in intensive-care units based on aggregation of long-term disease history and acute physiology: a retrospective study of the Danish National Patient Registry and electronic patient records
Annelaura B Nielsen, Hans-Christian Thorsen-Meyer, Kirstine Belling, Anna P Nielsen, Cecilia E Thomas, Piotr J Chmura, Mette Lademann, Pope L Moseley, Marc Heimann, Lars Dybdahl, Lasse Spangsege, Patrick Hulsen, Anders Perner, Søren Brunak
The Lancet Digital Health.2019; 1(2): e78. CrossRef Comparing Machine Learning Algorithms for Predicting Acute Kidney Injury
Joshua Parreco, Hahn Soe-Lin, Jonathan J. Parks, Saskya Byerly, Matthew Chatoor, Jessica L. Buicko, Nicholas Namias, Rishi Rattan
The American Surgeon™.2019; 85(7): 725. CrossRef Artificial neural network approach to predict surgical site infection after free-flap reconstruction in patients receiving surgery for head and neck cancer
Pao-Jen Kuo, Shao-Chun Wu, Peng-Chen Chien, Shu-Shya Chang, Cheng-Shyuan Rau, Hsueh-Ling Tai, Shu-Hui Peng, Yi-Chun Lin, Yi-Chun Chen, Hsiao-Yun Hsieh, Ching-Hua Hsieh
Oncotarget.2018; 9(17): 13768. CrossRef Internet of Health Things: Toward intelligent vital signs monitoring in hospital wards
Cristiano André da Costa, Cristian F. Pasluosta, Björn Eskofier, Denise Bandeira da Silva, Rodrigo da Rosa Righi
Artificial Intelligence in Medicine.2018; 89: 61. CrossRef Mortality prediction in patients with isolated moderate and severe traumatic brain injury using machine learning models
Cheng-Shyuan Rau, Pao-Jen Kuo, Peng-Chen Chien, Chun-Ying Huang, Hsiao-Yun Hsieh, Ching-Hua Hsieh, Yu Ru Kou
PLOS ONE.2018; 13(11): e0207192. CrossRef Using artificial intelligence to predict prolonged mechanical ventilation and tracheostomy placement
Joshua Parreco, Antonio Hidalgo, Jonathan J. Parks, Robert Kozol, Rishi Rattan
Journal of Surgical Research.2018; 228: 179. CrossRef Benchmarking deep learning models on large healthcare datasets
Sanjay Purushotham, Chuizheng Meng, Zhengping Che, Yan Liu
Journal of Biomedical Informatics.2018; 83: 112. CrossRef Comparison of machine learning models for the prediction of mortality of patients with unplanned extubation in intensive care units
Meng Hsuen Hsieh, Meng Ju Hsieh, Chin-Ming Chen, Chia-Chang Hsieh, Chien-Ming Chao, Chih-Cheng Lai
Scientific Reports.2018;[Epub] CrossRef A Systematic Review on Healthcare Analytics: Application and Theoretical Perspective of Data Mining
Md Saiful Islam, Md Mahmudul Hasan, Xiaoyi Wang, Hayley D. Germack, Md Noor-E-Alam
Healthcare.2018; 6(2): 54. CrossRef Early hospital mortality prediction using vital signals
Reza Sadeghi, Tanvi Banerjee, William Romine
Smart Health.2018; 9-10: 265. CrossRef Predicting central line-associated bloodstream infections and mortality using supervised machine learning
Joshua P. Parreco, Antonio E. Hidalgo, Alejandro D. Badilla, Omar Ilyas, Rishi Rattan
Journal of Critical Care.2018; 45: 156. CrossRef Predicting Mortality in the Surgical Intensive Care Unit Using Artificial Intelligence and Natural Language Processing of Physician Documentation
Joshua Parreco, Antonio Hidalgo, Robert Kozol, Nicholas Namias, Rishi Rattan
The American Surgeon™.2018; 84(7): 1190. CrossRef Predicting Hospital Readmission via Cost-Sensitive Deep Learning
Haishuai Wang, Zhicheng Cui, Yixin Chen, Michael Avidan, Arbi Ben Abdallah, Alexander Kronzer
IEEE/ACM Transactions on Computational Biology and Bioinformatics.2018; 15(6): 1968. CrossRef Data Mining on ICU Mortality Prediction Using Early Temporal Data: A Survey
Jianfeng Xu, Yuanjian Zhang, Peng Zhang, Azhar Mahmood, Yu Li, Shaheen Khatoon
International Journal of Information Technology & Decision Making.2017; 16(01): 117. CrossRef Patient length of stay and mortality prediction: A survey
Aya Awad, Mohamed Bader–El–Den, James McNicholas
Health Services Management Research.2017; 30(2): 105. CrossRef Survival prediction of trauma patients: a study on US National Trauma Data Bank
I. Sefrioui, R. Amadini, J. Mauro, A. El Fallahi, M. Gabbrielli
European Journal of Trauma and Emergency Surgery.2017; 43(6): 805. CrossRef Daily prediction of ICU readmissions using feature engineering and ensemble fuzzy modeling
Rita Viegas, Cátia M. Salgado, Sérgio Curto, João P. Carvalho, Susana M. Vieira, Stan N. Finkelstein
Expert Systems with Applications.2017; 79: 244. CrossRef Early hospital mortality prediction of intensive care unit patients using an ensemble learning approach
Aya Awad, Mohamed Bader-El-Den, James McNicholas, Jim Briggs
International Journal of Medical Informatics.2017; 108: 185. CrossRef Predictors of clinicians' underuse of daily sedation interruption and sedation scales
B. Sneyers, S. Henrard, P.F. Laterre, M.M. Perreault, C. Beguin, D. Wouters, N. Speybroeck, A. Spinewine
Journal of Critical Care.2017; 38: 182. CrossRef Mortality prediction in intensive care units with the Super ICU Learner Algorithm (SICULA): a population-based study
Romain Pirracchio, Maya L Petersen, Marco Carone, Matthieu Resche Rigon, Sylvie Chevret, Mark J van der Laan
The Lancet Respiratory Medicine.2015; 3(1): 42. CrossRef Korean Anaphora Recognition System to Develop Healthcare Dialogue-Type Agent
Junggi Yang, Youngho Lee
Healthcare Informatics Research.2014; 20(4): 272. CrossRef Recalibrating our prediction models in the ICU: time to move from the abacus to the computer
Romain Pirracchio, Otavio T. Ranzani
Intensive Care Medicine.2014; 40(3): 438. CrossRef Text Mining and Medicine: Usefulness in Respiratory Diseases
David Piedra, Antoni Ferrer, Joaquim Gea
Archivos de Bronconeumología (English Edition).2014; 50(3): 113. CrossRef Minería de textos y medicina: utilidad en las enfermedades respiratorias
David Piedra, Antoni Ferrer, Joaquim Gea
Archivos de Bronconeumología.2014; 50(3): 113. CrossRef Prediction Model for Health-Related Quality of Life of Elderly with Chronic Diseases using Machine Learning Techniques
Soo-Kyoung Lee, Youn-Jung Son, Jeongeun Kim, Hong-Gee Kim, Jae-Il Lee, Bo-Yeong Kang, Hyeon-Sung Cho, Sungin Lee
Healthcare Informatics Research.2014; 20(2): 125. CrossRef A Hybrid Framework for ICU Mortality Prediction
Jianfeng Xu, Yuanjian Zhang, Azhar Mahmood, Shaheen Khatoon, Yu Li
Journal of Software Engineering.2014; 8(4): 361. CrossRef In-Hospital Mortality Prediction in Patients Receiving Mechanical Ventilation in Taiwan
Chao-Ju Chen, Hon-Yi Shi, King-Teh Lee, Tzuu-Yuan Huang
American Journal of Critical Care.2013; 22(6): 506. CrossRef Making ICU Prognostication Patient Centered
William J. Ehlenbach, Colin R. Cooke
Critical Care Medicine.2013; 41(4): 1136. CrossRef How Can We Trust the Experts?*
Maurizia Capuzzo
Critical Care Medicine.2013; 41(7): 1816. CrossRef Prediction of survival probabilities with Bayesian Decision Trees
Vitaly Schetinin, Livia Jakaite, Wojtek J. Krzanowski
Expert Systems with Applications.2013; 40(14): 5466. CrossRef Predictive data mining on monitoring data from the intensive care unit
Fabian Güiza, Jelle Van Eyck, Geert Meyfroidt
Journal of Clinical Monitoring and Computing.2013; 27(4): 449. CrossRef Real-Data Comparison of Data Mining Methods in Prediction of Diabetes in Iran
Lily Tapak, Hossein Mahjub, Omid Hamidi, Jalal Poorolajal
Healthcare Informatics Research.2013; 19(3): 177. CrossRef Development and validation of a decision tree early warning score based on routine laboratory test results for the discrimination of hospital mortality in emergency medical admissions
Stuart W. Jarvis, Caroline Kovacs, Tessy Badriyah, Jim Briggs, Mohammed A. Mohammed, Paul Meredith, Paul E. Schmidt, Peter I. Featherstone, David R. Prytherch, Gary B. Smith
Resuscitation.2013; 84(11): 1494. CrossRef
|