Fall Detection System for the Elderly Based on the Classification of Shimmer Sensor Prototype Data
Moiz Ahmed, Nadeem Mehmood, Adnan Nadeem, Amir Mehmood, Kashif Rizwan
Healthc Inform Res. 2017;23(3):147-158.   Published online 2017 Jul 31     DOI: https://doi.org/10.4258/hir.2017.23.3.147
Citations to this article as recorded by Crossref logo
Cross-dataset evaluation of wearable fall detection systems using data from real falls and long-term monitoring of daily life
Carlos A. Silva, Eduardo Casilari, Rodolfo García-Bermúdez
Measurement.2024; 235: 114992.     CrossRef
The Effect of Sensor Feature Inputs on Joint Angle Prediction across Simple Movements
David Hollinger, Mark C. Schall, Howard Chen, Michael Zabala
Sensors.2024; 24(11): 3657.     CrossRef
Activity recognition of stroke‐affected people using wearable sensor
Anusha David, Rajavel Ramadoss, Amutha Ramachandran, Shoba Sivapatham
ETRI Journal.2023; 45(6): 1079.     CrossRef
Symmetrically Stacked Long Short-Term Memory Networks for Fall Event Recognition Using Compact Convolutional Neural Networks-Based Tracker
Nur Ayuni Mohamed, Mohd Asyraf Zulkifley, Nor Azwan Mohamed Kamari, Zulaikha Kadim
Symmetry.2022; 14(2): 293.     CrossRef
A study of the influence of the sensor sampling frequency on the performance of wearable fall detectors
José Antonio Santoyo-Ramón, Eduardo Casilari, José Manuel Cano-García
Measurement.2022; 193: 110945.     CrossRef
A Survey of IoT-Based Fall Detection for Aiding Elderly Care: Sensors, Methods, Challenges and Future Trends
Mohamed Esmail Karar, Hazem Ibrahim Shehata, Omar Reyad
Applied Sciences.2022; 12(7): 3276.     CrossRef
An analytical comparison of datasets of Real-World and simulated falls intended for the evaluation of wearable fall alerting systems
Eduardo Casilari, Carlos A. Silva
Measurement.2022; 202: 111843.     CrossRef
Fall detection smart-shoe enabled with wireless IoT device
Abanah Shirley J., Esther Florence Sundarsingh, Saraswathi V., Sankareshwari S., Sona S.
Circuit World.2021; 47(4): 325.     CrossRef
A Fall Risk Assessment Mechanism for Elderly People Through Muscle Fatigue Analysis on Data From Body Area Sensor Network
Amir Mehmood, Adnan Nadeem, Muhammad Ashraf, Muhammad Shoaib Siddiqui, Kashif Rizwan, Kamran Ahsan
IEEE Sensors Journal.2021; 21(5): 6679.     CrossRef
A Study on the Application of Convolutional Neural Networks to Fall Detection Evaluated with Multiple Public Datasets
Eduardo Casilari, Raúl Lora-Rivera, Francisco García-Lagos
Sensors.2020; 20(5): 1466.     CrossRef
A Study of the Use of Gyroscope Measurements in Wearable Fall Detection Systems
Eduardo Casilari, Moisés Álvarez-Marco, Francisco García-Lagos
Symmetry.2020; 12(4): 649.     CrossRef
Hardware for Recognition of Human Activities: A Review of Smart Home and AAL Related Technologies
Andres Sanchez-Comas, Kåre Synnes, Josef Hallberg
Sensors.2020; 20(15): 4227.     CrossRef
On the Heterogeneity of Existing Repositories of Movements Intended for the Evaluation of Fall Detection Systems
Eduardo Casilari, José A. Santoyo-Ramón, José M. Cano-García, Ivan Miguel Pires
Journal of Healthcare Engineering.2020; 2020: 1.     CrossRef
A comprehensive study on the use of artificial neural networks in wearable fall detection systems
Eduardo Casilari-Pérez, Francisco García-Lagos
Expert Systems with Applications.2019; 138: 112811.     CrossRef
A dataset build using wearable inertial measurement and ECG sensors for activity recognition, fall detection and basic heart anomaly detection system
Adnan Nadeem, Amir Mehmood, Kashif Rizwan
Data in Brief.2019; 27: 104717.     CrossRef
Web-Based Telepresence Exercise Program for Community-Dwelling Elderly Women With a High Risk of Falling: Randomized Controlled Trial
Jeeyoung Hong, Hyoun-Joong Kong, Hyung-Jin Yoon
JMIR mHealth and uHealth.2018; 6(5): e132.     CrossRef