Statistics and Deep Belief Network-Based Cardiovascular Risk Prediction
Jaekwon Kim, Ungu Kang, Youngho Lee
Healthc Inform Res. 2017;23(3):169-175.   Published online 2017 Jul 31     DOI: https://doi.org/10.4258/hir.2017.23.3.169
Citations to this article as recorded by Crossref logo
Artificial intelligence in the risk prediction models of cardiovascular disease and development of an independent validation screening tool: a systematic review
Yue Cai, Yu-Qing Cai, Li-Ying Tang, Yi-Han Wang, Mengchun Gong, Tian-Ci Jing, Hui-Jun Li, Jesse Li-Ling, Wei Hu, Zhihua Yin, Da-Xin Gong, Guang-Wei Zhang
BMC Medicine.2024;[Epub]     CrossRef
Pitfalls in Developing Machine Learning Models for Predicting Cardiovascular Diseases: Challenge and Solutions
Yu-Qing Cai, Da-Xin Gong, Li-Ying Tang, Yue Cai, Hui-Jun Li, Tian-Ci Jing, Mengchun Gong, Wei Hu, Zhen-Wei Zhang, Xingang Zhang, Guang-Wei Zhang
Journal of Medical Internet Research.2024; 26: e47645.     CrossRef
OEDL: an optimized ensemble deep learning method for the prediction of acute ischemic stroke prognoses using union features
Wei Ye, Xicheng Chen, Pengpeng Li, Yongjun Tao, Zhenyan Wang, Chengcheng Gao, Jian Cheng, Fang Li, Dali Yi, Zeliang Wei, Dong Yi, Yazhou Wu
Frontiers in Neurology.2023;[Epub]     CrossRef
Attention Aware Deep Learning Approaches for an Efficient Stress Classification Model
Muhammad Zulqarnain, Habib Shah, Rozaida Ghazali, Omar Alqahtani, Rubab Sheikh, Muhammad Asadullah
Brain Sciences.2023; 13(7): 994.     CrossRef
An imbalanced classification approach for establishment of cause-effect relationship between Heart-Failure and Pulmonary Embolism using Deep Reinforcement Learning
Naira Firdous, Nusrat Mohi Ud Din, Assif Assad
Engineering Applications of Artificial Intelligence.2023; 126: 107004.     CrossRef
Machine Learning Implementations for Multi-class Cardiovascular Risk Prediction in Family Health Units
Mert Erkan Sozen, Gorkem Sariyer, Mustafa Yigit Sozen, Gaurav Kumar Badhotiya, Lokesh Vijavargy
International Journal of Mathematical, Engineering and Management Sciences.2023; 8(6): 1171.     CrossRef
Handling of derived imbalanced dataset using XGBoost for identification of pulmonary embolism—a non-cardiac cause of cardiac arrest
Naira Firdous, Sushil Bhardwaj
Medical & Biological Engineering & Computing.2022; 60(2): 551.     CrossRef
Strategies for Sudden Cardiac Death Prevention
Mattia Corianò, Francesco Tona
Biomedicines.2022; 10(3): 639.     CrossRef
Coronary disease prediction by using upgraded deep learning CNN
S Prabhu Kumar, S. Harikrishnan, S. Ramsurat Kumar, T. Naveen Kumar
International journal of health sciences.2022; : 4980.     CrossRef
Similarity-Principle-Based Machine Learning Method for Clinical Trials and Beyond
Susan Hwang, Mark Chang
Statistics in Biopharmaceutical Research.2022; 14(4): 511.     CrossRef
Detection of Coronary Artery Using Novel Optimized Grid Search-based MLP
Iftikhar Hussain, Huma Qayyum, Raja Rizwan Javed, Farman Hassan, Auliya Ur Rahman
International Journal of Innovations in Science and Technology.2022; 4(1): 276.     CrossRef
Deep learning for the internet of things: Potential benefits and use-cases
Tausifa Jan Saleem, Mohammad Ahsan Chishti
Digital Communications and Networks.2021; 7(4): 526.     CrossRef
An Efficient Prediction Method for Coronary Heart Disease Risk Based on Two Deep Neural Networks Trained on Well-Ordered Training Datasets
Tsatsral Amarbayasgalan, Van-Huy Pham, Nipon Theera-Umpon, Yongjun Piao, Keun Ho Ryu
IEEE Access.2021; 9: 135210.     CrossRef
Deep Learning for the Industrial Internet of Things (IIoT): A Comprehensive Survey of Techniques, Implementation Frameworks, Potential Applications, and Future Directions
Shahid Latif, Maha Driss, Wadii Boulila, Zil e Huma, Sajjad Shaukat Jamal, Zeba Idrees, Jawad Ahmad
Sensors.2021; 21(22): 7518.     CrossRef
Lateral and Longitudinal Driving Behavior Prediction Based on Improved Deep Belief Network
Lei Yang, Chunqing Zhao, Chao Lu, Lianzhen Wei, Jianwei Gong
Sensors.2021; 21(24): 8498.     CrossRef
An approach of recursive timing deep belief network for algal bloom forecasting
Li Wang, Tianrui Zhang, Xuebo Jin, Jiping Xu, Xiaoyi Wang, Huiyan Zhang, Jiabin Yu, Qian Sun, Zhiyao Zhao, Yuxin Xie
Neural Computing and Applications.2020; 32(1): 163.     CrossRef
Prevalence and Diagnosis of Neurological Disorders Using Different Deep Learning Techniques: A Meta-Analysis
Ritu Gautam, Manik Sharma
Journal of Medical Systems.2020;[Epub]     CrossRef
Cardiovascular Risk Prediction in Ankylosing Spondylitis: From Traditional Scores to Machine Learning Assessment
Luca Navarini, Francesco Caso, Luisa Costa, Damiano Currado, Liliana Stola, Fabio Perrotta, Lorenzo Delfino, Michela Sperti, Marco A. Deriu, Piero Ruscitti, Viktoriya Pavlych, Addolorata Corrado, Giacomo Di Benedetto, Marco Tasso, Massimo Ciccozzi, Alice
Rheumatology and Therapy.2020; 7(4): 867.     CrossRef
Enhanced Deep Learning Assisted Convolutional Neural Network for Heart Disease Prediction on the Internet of Medical Things Platform
Yuanyuan Pan, Minghuan Fu, Biao Cheng, Xuefei Tao, Jing Guo
IEEE Access.2020; 8: 189503.     CrossRef
Computational models and neural nets: Fantastic models—Where to find them and how to identify them
Anthony S. Wierzbicki, Timothy M. Reynolds
International Journal of Clinical Practice.2019;[Epub]     CrossRef
Reconstruction error based deep neural networks for coronary heart disease risk prediction
Tsatsral Amarbayasgalan, Kwang Ho Park, Jong Yun Lee, Keun Ho Ryu, Xia Li
PLOS ONE.2019; 14(12): e0225991.     CrossRef
Machine learning to predict cardiovascular risk
Jose A. Quesada, Adriana Lopez‐Pineda, Vicente F. Gil‐Guillén, Ramón Durazo‐Arvizu, Domingo Orozco‐Beltrán, Angela López-Domenech, Concepción Carratalá‐Munuera
International Journal of Clinical Practice.2019;[Epub]     CrossRef
Deep Learning in Cardiology
Paschalis Bizopoulos, Dimitrios Koutsouris
IEEE Reviews in Biomedical Engineering.2019; 12: 168.     CrossRef
LEVERAGING THE POWER OF HYBRID MACHINE LEARNING ALGORITHMS TO PREDICT CARDIOVASCULAR DISEASES - A REVIEW
ANURADHA P., KALYANI DAVID VASANTHA
i-manager's Journal on Computer Science.2017; 5(3): 60.     CrossRef
White blood cell differential count of maturation stages in bone marrow smear using dual-stage convolutional neural networks
Jin Woo Choi, Yunseo Ku, Byeong Wook Yoo, Jung-Ah Kim, Dong Soon Lee, Young Jun Chai, Hyoun-Joong Kong, Hee Chan Kim, Constantino Carlos Reyes-Aldasoro
PLOS ONE.2017; 12(12): e0189259.     CrossRef