1. Hripcsak G, Duke JD, Shah NH, Reich CG, Huser V, Schuemie MJ, et al. Observational Health Data Sciences and Informatics (OHDSI): opportunities for observational researchers. Stud Health Technol Inform 2015;216:574-8.
2. Stang PE, Ryan PB, Racoosin JA, Overhage JM, Hartzema AG, Reich C, et al. Advancing the science for active surveillance: rationale and design for the observational medical outcomes partnership. Ann Intern Med 2010;153(9):600-6.
https://doi.org/10.7326/0003-4819-153-9-201011020-00010
8. de Groot R, Puttmann DP, Fleuren LM, Thoral PJ, Elbers PW, de Keizer NF, et al. Determining and assessing characteristics of data element names impacting the performance of annotation using Usagi. Int J Med Inform. 2023 Oct;178:105200.
https://doi.org/10.1016/j.ijmedinf.2023.105200
10. Butler J, Zand M. Similarity mapping of national drug code formulary systems between nations [Internet]. Durham (NC): Research Square; 2022 [cited at 2024 Jun 6]. Available from:
https://doi.org/10.21203/rs.3.rs-1858694/v1
11. Zhang Y, Guo L, Du C, Wang Y, Huang D. Extraction of English drug names based on Bert-CNN mode. J Inf Hiding Multimed Signal Process 2020;11(2):70-8.
13. Gao Y, Xiong Y, Gao X, Jia K, Pan J, Bi Y, et al. Retrieval-augmented generation for large language models: a survey [Internet]. Ithaca (NY): arXiv.org; 2023 [cited at 2024 Jun 6]. Available from:
https://arxiv.org/abs/2005.14165
14. Izacard G, Lewis P, Lomeli M, Hosseini L, Petroni F, Schick T, et al. Few-shot learning with retrieval augmented language models [Internet]. Ithaca (NY): arXiv.org; 2022 [cited at 2024 Jun 6]. Available from:
https://arxiv.org/abs/2208.03299
16. National Institute of Health Sciences. Japanese accepted names for pharmaceuticals [Internet]. Tokyo, Japan: National Institute of Health Sciences; c2024 [cited at 2024 Jun 6]. Available from:
https://jpdb.nihs.go.jp/jan
17. Odysseus Data Services. ATHENA: OHDSI Vocabularies Repository [Internet]. [place unknown]: OHDSI; c2024 [cited at 2024 Jun 6]. Available from:
https://athena.ohdsi.org/
19. Wu Y. Google’s neural machine translation system: bridging the gap between human and machine translation [Internet]. Ithaca (NY): arXiv.org; 2016 [cited at 2024 Jun 6]. Available from:
https://arxiv.org/abs/1609.08144
20. Douze M, Guzhva A, Deng C, Johnson J, Szilvasy G, Mazare PE, et al. The Faiss library [Internet]. Ithaca (NY): arXiv.org; 2024 [cited at 2024 Jun 6]. Available from:
https://arxiv.org/abs/2401.08281
22. Jiang AQ, Sablayrolles A, Mensch A, Bamford C, Chaplot DS, de las Casas D, et al. Mistral 7B [Internet]. Ithaca (NY): arXiv.org; 2023 [cited at 2024 Jun 6]. Available from:
https://arxiv.org/abs/2310.06825
23. Tunstall L, Schmid P, Sanseviero O, Cuenca P, Dehaene O, von Werra L, et al. Welcome Mixtral: a SOTA mixture of experts on Hugging Face [Internet]. Brooklyn (NY): Hugging Face; 2023 [cited at 2024 Jun 6]. Available from:
https://huggingface.co/blog/mixtral
24. Ji Z, Wei Q, Xu H. BERT-based ranking for biomedical entity normalization. AMIA Jt Summits Transl Sci Proc 2020;2020:269-77.
25. Shazeer N, Mirhoseini A, Maziarz K, Davis A, Le Q, Hinton G, et al. Outrageously large neural networks: the sparsely-gated mixture-of-experts layer [Internet]. Ithaca (NY): arXiv.org; 2017 [cited at 2024 Jun 6]. Available from:
https://arxiv.org/abs/1701.06538
26. Achiam J, Adler S, Agarwal S, Ahmad L, Akkaya I, Aleman FL, et al. GPT-4 technical report [Internet]. Ithaca (NY): arXiv.org; 2023 [cited at 2024 Jun 6]. Available from:
https://arxiv.org/abs/2303.08774v1
27. Wu T, He S, Liu J, Sun S, Liu K, Han QL, et al. A brief overview of ChatGPT: the history, status quo and potential future development. IEEE/CAA J Automatica Sinica 2023;10(5):1122-36.
https://doi.org/10.1109/JAS.2023.123618
29. Bassani E. ranx: a blazing-fast python library for ranking evaluation and comparison. European Conference on Information Retrieval. Cham, Switzerland: Springer; 2022. p. 259-64.
https://doi.org/10.1007/978-3-030-99739-7_30