1. Khazaei Z, Rajabfardi Z, Hatami H, Khodakarim S, Khazaei S, Zobdeh Z. Factors associated with end stage renal disease among hemodialysis patients in Tuyserkan City in 2013. Pajouhan Sci J 2014;13(1):33-41.

2. Bond M, Pitt M, Akoh J, Moxham T, Hoyle M, Anderson R. The effectiveness and cost-effectiveness of methods of storing donated kidneys from deceased donors: a systematic review and economic model. Health Technol Assess 2009;13(38):iii-156.

3. The Iranian Dialysis Consortium. Iran Dialysis Calender [Internet]. Tehran, Iran: The Iranian Dialysis Consortium; c2019 [cited at 2020 Apr 28]. Available from:

http://www.icdgroup.org.

4. Zahran A, El-Husseini A, Shoker A. Can cystatin C replace creatinine to estimate glomerular filtration rate? A literature review. Am J Nephrol 2007;27(2):197-205.

6. Hedeker D. editors. Generalized linear mixed models. In: Everitt B, Howell DC, 9780470860809. Hoboken (NJ): John Wiley & Sons; 2005.

7. Hedeker D, Gibbons RD. Longitudinal data analysis. Hoboken (NJ): John Wiley & Sons; 2006.

8. Verbeke G, Molenberghs G. Linear mixed models for longitudinal data. New York (NY): Springer; 2009.

9. Amini P, Ahmadinia H, Poorolajal J, Moqaddasi Amiri M. Evaluating the high risk groups for suicide: a comparison of logistic regression, support vector machine, decision tree and artificial neural network. Iran J Public Health 2016;45(9):1179-87.

10. Amini P, Maroufizadeh S, Hamidi O, Samani RO, Sepidarkish M. Factors associated with macrosomia among singleton live-birth: A comparison between logistic regression, random forest and artificial neural network methods. Epidemiol Biostat Public Health 2016;13(4):e11985.

12. Suykens JA, Van Gestel T, De Brabanter J, De Moor B, Vandewalle J. Least squares support vector machines. Singapore: World Scientific Publishing; 2002.

13. Suykens JA, Vandewalle J. Least squares support vector machine classifiers. Neural Process Lett 1999;9(3):293-300.

14. Shim J, Sohn I, Hwang C. Kernel-based random effect time-varying coefficient model for longitudinal data. Neurocomputing 2017;267:500-7.

15. Amiri MM, Tapak L, Faradmal J. A mixed-effects least square support vector regression model for three-level count data. J Stat Comput Simul 2019;89(15):2801-12.

16. Seok KH, Shim J, Cho D, Noh GJ, Hwang C. Semiparametric mixed-effect least squares support vector machine for analyzing pharmacokinetic and pharmacodynamic data. Neurocomputing 2011;74(17):3412-9.

17. Amiri MM, Tapak L, Faradmal J. A support vector regression approach for three–level longitudinal data. Epidemiol Biostat Public Health 2019;16(3):e13129.

18. Hosseini J. Comparison of longitudinal data analysis methods and its application in modeling health indicators [thesis]. Hamadan, Iran: Hamadan University of Medical Sciences; 2019.

19. Montgomery DC, Peck EA, Vining GG. Introduction to linear regression analysis. Hoboken (NJ): John Wiley & Sons; 2012.

20. Vapnik V. The nature of statistical learning theory. New York (NY): Springer; 2010.

21. Zhang H, Singer BH. Recursive partitioning and applications. New York (NY): Springer; 2010.

25. Tatari M, Rahgozar M, Khanloo SA, Hosseinzadeh S. The relationship between blood creatinine levels and survival of patients with kidney disease using joint longitudinal and survival model. J Health Promot Manag 2017;6(3):12-9.