1. Attia ZI, Noseworthy PA, Lopez-Jimenez F, Asirvatham SJ, Deshmukh AJ, Gersh BJ, et al. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction. Lancet 2019;394:861-7.
2. van Ravenswaaij-Arts CM, Kollee LA, Hopman JC, Stoelinga GB, van Geijn HP. Heart rate variability. Ann Intern Med 1993;118:436-47.
4. Attia ZI, Kapa S, Lopez-Jimenez F, McKie PM, Ladewig DJ, Satam G, et al. Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram. Nat Med 2019;25:70-4.
5. Isakadze N, Martin SS. How useful is the smartwatch ECG? Trends Cardiovasc Med 2020;30:442-8.
6. Pan SJ, Yang Q. A survey on transfer learning. IEEE Trans Knowl Data Eng 2009;22:1345-59.
7. Zhao W. Research on the deep learning of the small sample data based on transfer learning. AIP Conf Proc 2017;1864:020018.
8. Raghu M, Zhang C, Kleinberg J, Bengio S. Transfusion: understanding transfer learning for medical imaging [Internet]. Ithaca (NY): arXiv.org; 2019 [cited at 2021 Jan 4]. Available from:
https://arxiv.org/abs/1902.07208
9. Ranti D, Hanss K, Zhao S, Arvind V, Titano J, Costa A, et al. The utility of general domain transfer learning for medical language tasks [Internet]. Ithaca (NY): arXiv.org; 2020 [cited at 2021 Jan 4]. Available from:
https://arxiv.org/abs/2002.06670
11. Tadesse GA, Zhu T, Liu Y, Zhou Y, Chen J, Tian M, et al. Cardiovascular disease diagnosis using cross-domain transfer learning. Annu Int Conf IEEE Eng Med Biol Soc 2019;2019:4262-5.
12. Salem M, Taheri S, Yuan JS. ECG arrhythmia classification using transfer learning from 2-dimensional deep CNN features. Proceedings of 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS); 2018 Oct 17–19. Cleveland, OH.
13. Abdelazez M, Rajan S, Chan AD. Transfer learning for detection of atrial fibrillation in deterministic compressive sensed ECG. Annu Int Conf IEEE Eng Med Biol Soc 2020;2020:5398-401.
14. Wen L, Gao L, Li X. A new deep transfer learning based on sparse auto-encoder for fault diagnosis. IEEE Trans Syst Man Cybern Syst 2017;49:136-44.
16. Eduardo A, Aidos H, Fred A. ECG-based biometrics using a deep autoencoder for feature learning-an empirical study on transferability. Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods; 2017 Feb 24–26. Porto, Portugal; p. 463-70.
19. Baldi P. Autoencoders, unsupervised learning, and deep architectures. Proceedings of the International Conference on Machine Learning (ICML): Unsupervised and Transfer Learning; 2012 Jun 26–Jul 1. Edinburgh, Scotland; p. 37-49.
20. Liu W, Wang Z, Liu X, Zeng N, Liu Y, Alsaadi FE. A survey of deep neural network architectures and their applications. Neurocomputing 2017;234:11-26.
21. Qin Z, Yu F, Liu C, Chen X. How convolutional neural network see the world-A survey of convolutional neural network visualization methods [Internet]. Ithaca (NY): arXiv.org; 2018 [cited at 2021 Jan 4]. Available from:
https://arxiv.org/abs/1804.11191
22. Deng J, Dong W, Socher R, Li LJ, Li K, Li FF. ImageNet: a large-scale hierarchical image database. Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition; 2009 Jun 20–25. Miami, FL; p. 248-55.
23. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going deeper with convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2015 Jun 7–12. Boston, MA; p. 1-9.
24. DiCiccio TJ, Efron B. Bootstrap confidence intervals. Stat Sci 1996;11:189-212.
25. Kingma DP, Ba J. Adam: a method for stochastic optimization [Internet]. Ithaca (NY): arXiv.org; 2014 [cited at 2021 Jan 4]. Available from:
https://arxiv.org/abs/1412.6980
26. Hussain M, Bird JJ, Faria DR. A study on CNN transfer learning for image classification. In: Lotfi A, Bouchachia H, Gegov A, Langensiepen C, McGinnity M, editors. Advances in computational intelligence systems. Cham, Switzerland: Springer; 2018. p. 191-202.
27. Huh M, Agrawal P, Efros AA. What makes ImageNet good for transfer learning? [Internet]. Ithaca (NY): arXiv. org; 2016 [cited at 2021 Jan 4]. Available from:
https://arxiv.org/abs/1608.08614