5. Blume PA. The LabVIEW style book. Boston (MA): Prentice-Hall; 2011.
6. Frank E, Hall M, Holmes G, Kirkby R, Pfahringer B, Witten IH, et al. Weka: a machine learning workbench for data mining. In: Maimon O, Rokach L, editors. Data mining and knowledge discovery handbook. Boston (MA): Springer; 2009. p. 1269-77.
10. Cohen JP, Morrison P, Dao L, Roth K, Duong TQ, Ghassemi M. Covid-19 image data collection: prospective predictions are the future [Internet]. Ithaca (NY): arXiv.org; 2020 [cited at 2020 Jan 28]. Available from:
https://arxiv.org/abs/2006.11988
11. Shaheen F, Verma B, Asafuddoula M. Impact of automatic feature extraction in deep learning architecture. Proceedings of 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA); 2016 Nov 30–Dec 2. Gold Coast, Australia; p. 1-8.
12. Vinayakumar R, Soman KP, Poornachandran P. Applying convolutional neural network for network intrusion detection. Proceedings of 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI); 2017 Sep 13–16. Udupi, India; p. 1222-8.
13. Swapna G, Soman Kp, Vinayakumar R. Automated detection of diabetes using CNN and CNN-LSTM network and heart rate signals. Procedia computer science 2018;132:1253-62.
15. Ismael AM, Sengur A. Deep learning approaches for COVID-19 detection based on chest X-ray images. Expert Syst Appl 2021;164:114054.
16. Maghdid HS, Asaad AT, Ghafoor KZ, Sadiq AS, Khan MK. Diagnosing COVID-19 pneumonia from X-ray and CT images using deep learning and transfer learning algorithms [Internet]. Ithaca (NY): arXiv.org; 2020 [cited at 2020 Jan 28]. Available from:
https://arxiv.org/abs/2004.00038
17. Phillips NA, Rajpurkar P, Sabini M, Krishnan R, Zhou S, Pareek A, et al. Chexphoto: 10,000+ smartphone photos and synthetic photographic transformations of chest x-rays for benchmarking deep learning robustness [Internet]. Ithaca (NY): arXiv.org; 2020 [cited at 2020 Jan 28]. Available from:
https://arxiv.org/abs/2007.06199