2. Raba D, Oliver A, Marti J, Peracaula M, Espunya J. Breast segmentation with pectoral muscle suppression on digital mammograms. In: Marques JS, Perez de la Blanca N, Pina P, editors. Iberian conference on pattern recognition and image analysis. Springer Berlin, Heidelberg, Germany: Springer; 2005. p. 471-8.
3. Linguraru MG, Marias K, English R, Brady M. A biologically inspired algorithm for microcalcification cluster detection. Med Image Anal 2006;10(6):850-62.
4. Elshinawy MY, Abdelmageed WW, Badawy AH, Chouikha MF. Pre-CAD system for normal mammogram detection using local binary pattern features. Proceedings of 2010 IEEE 23rd international Symposium on Computer-Based Medical Systems (CBMS); 2010 Oct 12–15. Bentley, Australia; p. 352-7.
6. Giger ML, Karssemeijer N, Schnabel JA. Breast image analysis for risk assessment, detection, diagnosis, and treatment of cancer. Annu Rev Biomed Eng 2013;15:327-57.
7. Moghbel M, Ooi CY, Ismail N, Hau YW, Memari N. A review of breast boundary and pectoral muscle segmentation methods in computer-aided detection/diagnosis of breast mammography. Artif Intell Rev 2020;53(3):1873-918.
8. Ancy CA, Nair LS. Tumour classification in graph-cut segmented mammograms using GLCM features-fed SVM. In: Bhateja V, Coello Coello C, Satapathy S, Pattnaik P, editors. Intelligent engineering informatics. Singapore: Springer; 2018. p. 197-208.
9. Rahimeto S, Debelee TG, Yohannes D, Schwenker F. Automatic pectoral muscle removal in mammograms. Evol Syst 2019;12:519-26.
10. Karale VA, Singh T, Sadhu A, Khandelwal N, Mukhopadhyay S. Reduction of false positives in the screening CAD tool for microcalcification detection. Sadhana 2020;45:44.
11. Chan HP, Sahiner B, Lam KL, Petrick N, Helvie MA, Goodsitt MM, et al. Computerized analysis of mammographic microcalcifications in morphological and texture feature spaces. Med Phys 1998;25(10):2007-19.
12. Leichter I, Lederman R, Buchbinder S, Bamberger P, Novak B, Fields S. Optimizing parameters for computer-aided diagnosis of microcalcifications at mammography. Acad Radiol 2000;7(6):406-12.
13. Tsujii O, Freedman MT, Mun SK. Classification of microcalcifications in digital mammograms using trend-oriented radial basis function neural network. Pattern Recognit 1999;32(5):891-903.
14. Betal D, Roberts N, Whitehouse GH. Segmentation and numerical analysis of microcalcifications on mammograms using mathematical morphology. Br J Radiol 1997;70(837):903-17.
15. Paquerault S, Yarusso LM, Papaioannou J, Jiang Y, Nishikawa RM. Radial gradient-based segmentation of mammographic microcalcifications: observer evaluation and effect on CAD performance. Med Phys 2004;31(9):2648-57.
16. Kim JK, Park HW. Statistical textural features for detection of microcalcifications in digitized mammograms. IEEE Trans Med Imaging 1999;18(3):231-8.
17. Soltanian-Zadeh H, Rafiee-Rad F. Comparison of multiwavelet, wavelet, Haralick, and shape features for microcalcification classification in mammograms. Pattern Recognit 2004;37(10):1973-86.
18. Qayyum A, Basit A. Automatic breast segmentation and cancer detection via SVM in mammograms. Proceedings of 2016 International Conference on Emerging Technologies (ICET); 2016 Oct 18–19. Islamabad, Pakistan; p. 1-6.
19. Slavkovic-Ilic M, Gavrovska A, Milivojevic M, Reljin I, Reljin B. Breast region segmentation and pectoral muscle removal in mammograms. Telfor J 2016;8(1):50-5.
21. Camilus KS, Govindan VK, Sathidevi PS. Computer-aided identification of the pectoral muscle in digitized mammograms. J Digit Imaging 2010;23(5):562-80.
22. Abdellatif H, Taha TE, Zahran OF, Al-Nauimy W, Abd El-Samie FE. K2. Automatic pectoral muscle boundary detection in mammograms using eigenvectors segmentation. Proceedings of 2012 29th National Radio Science Conference (NRSC);; 2012 Apr 10ă12. Cairo, Egypt; p. 633-40.
23. Shinde V, Rao BT. Novel approach to segment the pectoral muscle in the mammograms. In: Mallick P, Balas V, Bhoi A, Zobaa A, editors. Cognitive informatics and soft computing. Singapore: Springer; 2019. p. 227-37.
24. El-Naqa I, Yang Y, Wernick MN, Galatsanos NP, Nishikawa RM. A support vector machine approach for detection of microcalcifications. IEEE Trans Med Imaging 2002;21(12):1552-63.
25. Liu X, Mei M, Liu J, Hu W. Microcalcification detection in full-field digital mammograms with PFCM clustering and weighted SVM-based method. EURASIP J Adv Signal Process 2015;2015:73.
28. Alam N, Oliver A, Denton ER, Zwiggelaar R. Automatic segmentation of microcalcification clusters. In: Nixon M, Mahmoodi S, Zwiggelaar R, editors. Medical image understanding and analysis. Cham, Switzerland: Springer; 2018. p. 251-61.