1. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet 2016;387(10027):1513-30.
2. International Diabetes Federation. Diabetes atlas. 9th ed.. Brussels, Belgium: International Diabetes Federation; 2019.
4. Narayan KM, Chan J, Mohan V. Early identification of type 2 diabetes: policy should be aligned with health systems strengthening. Diabetes Care 2011;34(1):244-6.
5. World Health Organization. Global report on diabetes. Geneva, Switzerland: World Health Organization; 2016.
8. Meng XH, Huang YX, Rao DP, Zhang Q, Liu Q. Comparison of three data mining models for predicting diabetes or prediabetes by risk factors. Kaohsiung J Med Sci 2013;29(2):93-9.
10. Hajian-Tilaki K. Sample size estimation in diagnostic test studies of biomedical informatics. J Biomed Inform 2014;48:193-204.
12. Novakovic J, Rankov S. Classification performance using principal component analysis and different value of the ratio R. Int J Comput Commun Control 2011;6(2):317-27.
13. Russell S, Norvig P. Artificial intelligence: a modern approach. Englewood Cliffs (NJ): Prentice-Hall; 2010.
14. Nwoye EO, Nwaneri SC, Iruhe NK, Babatunde AM. Application of artificial neural network in breast cancer classification: a comparative study. J Basic Med Sci 2014;2(1):32-8.
15. Rojas R. Neural networks: a systematic introduction. Heidelberg, Germany: Springer; 1996.
16. Sisodia D, Sisodia DS. Prediction of diabetes using classification algorithms. Procedia Comput Sci 2018;132:1578-85.
17. Dev VA, Eden MR. Gradient boosted decision trees for lithology classification. Comput Aided Chem Eng 2019;47:113-8.
18. Lastra G, Syed S, Kurukulasuriya LR, Manrique C, Sowers JR. Type 2 diabetes mellitus and hypertension: an update. Endocrinol Metab Clin North Am 2014;43(1):103-22.
19. Suastika K, Dwipayana P, Semadi MS, Kuswardhani RT. Age is an important risk factor for type 2 diabetes mellitus and cardiovascular diseases. In: Chackrewarthy S, editors. Glucose tolerance. Rijeka, Croatia: Intech Open; 2012. p. 67-76.
21. Tillin T, Hughes AD, Godsland IF, Whincup P, Forouhi NG, Welsh P, et al. Insulin resistance and truncal obesity as important determinants of the greater incidence of diabetes in Indian Asians and African Caribbeans compared with Europeans: the Southall And Brent REvisited (SABRE) cohort. Diabetes Care 2013;36(2):383-93.
24. El_Jerjawi NS, Abu-Naser SS. Diabetes prediction using artificial neural network. Int J Adv Sci Technol 2018;121:54-64.
25. Nai-arun N, Moungmai R. Comparison of classifiers for the risk of diabetes prediction. Procedia Comput Sci 2015;69:132-42.
26. Wang C, Li L, Wang L, Ping Z, Flory MT, Wang G, et al. Evaluating the risk of type 2 diabetes mellitus using artificial neural network: an effective classification approach. Diabetes Res Clin Pract 2013;100(1):111-8.
27. Mohamed EI, Linder R, Perriello G, Di Daniele N, Poppl SJ, De Lorenzo A. Predicting type 2 diabetes using an electronic nose-based artificial neural network analysis. Diabetes Nutr Metab 2002;15(4):215-21.
28. Kazemnejad A, Batvandi Z, Faradmal J. Comparison of artificial neural network and binary logistic regression for determination of impaired glucose tolerance/diabetes. East Mediterr Health J 2010;16(6):615-20.
29. Li CP, Zhi XY, Ma J, Cui Z, Zhu ZL, Zhang C, et al. Performance comparison between logistic regression, decision trees, and multilayer perceptron in predicting peripheral neuropathy in type 2 diabetes mellitus. Chin Med J (Engl) 2012;125(5):851-7.