2. International Diabetes Federation. Diabetes atlas. 9th ed.. Brussels, Belgium: International Diabetes Federation; 2019.
5. World Health Organization. Global report on diabetes. Geneva, Switzerland: World Health Organization; 2016.
8. Meng XH, Huang YX, Rao DP, Zhang Q, Liu Q. Comparison of three data mining models for predicting diabetes or prediabetes by risk factors. Kaohsiung J Med Sci 2013;29(2):93-9.
10. Hajian-Tilaki K. Sample size estimation in diagnostic test studies of biomedical informatics. J Biomed Inform 2014;48:193-204.
12. Novakovic J, Rankov S. Classification performance using principal component analysis and different value of the ratio R. Int J Comput Commun Control 2011;6(2):317-27.
13. Russell S, Norvig P. Artificial intelligence: a modern approach. Englewood Cliffs (NJ): Prentice-Hall; 2010.
14. Nwoye EO, Nwaneri SC, Iruhe NK, Babatunde AM. Application of artificial neural network in breast cancer classification: a comparative study. J Basic Med Sci 2014;2(1):32-8.
15. Rojas R. Neural networks: a systematic introduction. Heidelberg, Germany: Springer; 1996.
16. Sisodia D, Sisodia DS. Prediction of diabetes using classification algorithms. Procedia Comput Sci 2018;132:1578-85.
17. Dev VA, Eden MR. Gradient boosted decision trees for lithology classification. Comput Aided Chem Eng 2019;47:113-8.
18. Lastra G, Syed S, Kurukulasuriya LR, Manrique C, Sowers JR. Type 2 diabetes mellitus and hypertension: an update. Endocrinol Metab Clin North Am 2014;43(1):103-22.
19. Suastika K, Dwipayana P, Semadi MS, Kuswardhani RT. Age is an important risk factor for type 2 diabetes mellitus and cardiovascular diseases. In: Chackrewarthy S, editors. Glucose tolerance. Rijeka, Croatia: Intech Open; 2012. p. 67-76.
24. El_Jerjawi NS, Abu-Naser SS. Diabetes prediction using artificial neural network. Int J Adv Sci Technol 2018;121:54-64.
25. Nai-arun N, Moungmai R. Comparison of classifiers for the risk of diabetes prediction. Procedia Comput Sci 2015;69:132-42.
26. Wang C, Li L, Wang L, Ping Z, Flory MT, Wang G, et al. Evaluating the risk of type 2 diabetes mellitus using artificial neural network: an effective classification approach. Diabetes Res Clin Pract 2013;100(1):111-8.
27. Mohamed EI, Linder R, Perriello G, Di Daniele N, Poppl SJ, De Lorenzo A. Predicting type 2 diabetes using an electronic nose-based artificial neural network analysis. Diabetes Nutr Metab 2002;15(4):215-21.
28. Kazemnejad A, Batvandi Z, Faradmal J. Comparison of artificial neural network and binary logistic regression for determination of impaired glucose tolerance/diabetes. East Mediterr Health J 2010;16(6):615-20.
29. Li CP, Zhi XY, Ma J, Cui Z, Zhu ZL, Zhang C, et al. Performance comparison between logistic regression, decision trees, and multilayer perceptron in predicting peripheral neuropathy in type 2 diabetes mellitus. Chin Med J (Engl) 2012;125(5):851-7.