1. Weintraub D, Comella CL, Horn S. Parkinson’s disease: Part 1: pathophysiology, symptoms, burden, diagnosis, and assessment. Am J Manag Care 2008;14(2 Suppl):S40-8.
2. Goetz CG, Poewe W, Rascol O, Sampaio C. Evidence-based medical review update: pharmacological and surgical treatments of Parkinson’s disease: 2001 to 2004. Mov Disord 2005 20(5):523-39.
https://doi.org/10.1002/mds.20464
3. Ho AK, Iansek R, Marigliani C, Bradshaw JL, Gates S. Speech impairment in a large sample of patients with Parkinson’s disease. Behav Neurol 1998 11(3):131-7.
https://doi.org/10.1155/1999/327643
5. Sakar CO, Serbes G, Gunduz A, Tunc HC, Nizam H, Sakar BE, et al. A comparative analysis of speech signal processing algorithms for Parkinson’s disease classification and the use of the tunable Q-factor wavelet transform. Appl Soft Comput 2019 74:255-63.
https://doi.org/10.1016/j.asoc.2018.10.022
7. Haq AU, Li JP, Memon MH, Malik A, Ahmad T, Ali A, et al. Feature selection based on L1-norm support vector machine and effective recognition system for Parkinson’s disease using voice recordings. IEEE Access 2019 7:37718-34.
https://doi.org/10.1109/ACCESS.2019.2906350
8. Almeida JS, Reboucas Filho PP, Carneiro T, Wei W, Damasevicius R, Maskeliunas R, et al. Detecting Parkinson’s disease with sustained phonation and speech signals using machine learning techniques. Pattern Recognit Lett 2019 125:55-62.
https://doi.org/10.1016/j.patrec.2019.04.005
10. Benba A, Jilbab A, Hammouch A. Analysis of multiple types of voice recordings in cepstral domain using MFCC for discriminating between patients with Parkinson’s disease and healthy people. Int J Speech Technol 2016 19(3):449-56.
https://doi.org/10.1007/s10772-016-9338-4
14. Wong SL, Gilmour HL, Ramage-Morin PL. Parkinson’s disease: prevalence, diagnosis and impact. Health Rep 2014;25(11):10-4.
16. Giannakopoulos T, Pikrakis A. Introduction to audio analysis: a MATLAB approach. Kidlington, UK: Academic Press; 2014.
19. Kotsiantis SB, Kanellopoulos D, Pintelas PE. Data preprocessing for supervised leaning. Int J Comput Sci 2006;1(2):111-7.
22. Bergstra J, Bengio Y. Random search for hyper-parameter optimization. J Mach Learn Res 2012;13(2):281-305.
24. Virbel M, Hansen T, Lobunets O. Kivy: a framework for rapid creation of innovative user interfaces. Workshop-Proceedings der Tagung Mensch & Computer 2011; 2011 Sep 11–14. Chemnitz, Germany; p. 69-73.
28. Django: the web framework for perfectionists with deadlines [Internet]. [place unknown]: Django Software Foundation; c2022 [cited at 2022 Jul 20]. Available from:
https://www.djangoproject.com/
29. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: machine learning in Python. J Mach Learn Res 2011;12:2825-30.