1. Graber TM, Vanarsdall RL. Orthodontics: current principles & techniques. 3rd ed. St. Louis (MO): Mosby; 2000.
2. Proffit WR, Fields HW. Contemporary orthodontics. 3rd ed. St. Louis (MO): Mosby; 2000.
4. Wehle HD. Machine learning, deep learning and AI: what’s the difference. Proceedings of the Annual Data Scientist Innovation Day Conference; 2017 Mar 28. Brussels, Belgium.
7. Wolford L, Stevao E, Alexander CA, Goncalves JR. Orthodontics for orthognathic surgery. In: Miloro M, editors. Peterson’s principles of oral and maxillofacial surgery. 2nd ed. Ontario, Canada: BC Decker Inc; 2004. p. 1111-34.
11. Toshev A, Szegedy C. DeepPose: human pose estimation via deep neural networks. Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition; 2014 Jun 23–28. Columbus, OH; 1-5.
https://doi.org/10.1109/CVPR.2014.214
12. Agarap AF. Deep learning using rectified linear units (ReLU) [Internet]. Ithaca (NY): arXiv.org; 2018 [cited at 2022 Oct 10]. Available from:
https://arxiv.org/abs/1803.08375
13. Gulli A, Pal S. Deep learning with Keras. Birmingham, UK: Packt Publishing Ltd; 2017.
15. Han J, Pei J, Kamber M. Data mining: concepts and techniques. Amsterdam, Netherlands: Elsevier; 2011.
16. Chen YW, Stanley K, Att W. Artificial intelligence in dentistry: current applications and future perspectives. Quintessence Int 2020 51(3):248-57.
https://doi.org/10.3290/j.qi.a43952
17. Zhang WC, Fu C, Zhu M. Joint object contour points and semantics for instance segmentation [Internet]. Ithaca (NY): arXiv.org; 2020 [cited at 2022 Oct 10]. Available from:
https://arxiv.org/abs/2008.00460
18. Uzair M, Jamil N. Effects of hidden layers on the efficiency of neural networks. Proceedings of 2020 IEEE 23rd International Multitopic Conference (INMIC); 2020 Nov 5–7. Bahawalpur, Pakistan; p. 1-6.
https://doi.org/10.1109/INMIC50486.2020.9318195
19. Ide H, Kurita T. Improvement of learning for CNN with ReLU activation by sparse regularization. Proceedings of 2017 International Joint Conference on Neural Networks (IJCNN); 2017 May 14–19. Anchorage, AK; p. 2684-2691.
https://doi.org/10.1109/IJCNN.2017.7966185
20. Lee KS, Ryu JJ, Jang HS, Lee DY, Jung SK. Deep convolutional neural networks based analysis of cephalometric radiographs for differential diagnosis of orthognathic surgery indications. Appl Sci 2020 10(6):2124.
https://doi.org/10.3390/app10062124
21. Choi HI, Jung SK, Baek SH, Lim WH, Ahn SJ, Yang IH, et al. Artificial intelligent model with neural network machine learning for the diagnosis of orthognathic surgery. J Craniofac Surg 2019 30(7):1986-9.
https://doi.org/10.1097/SCS.0000000000005650
23. Schabel BJ, McNamara JA Jr, Franchi L, Baccetti T. Qsort assessment vs visual analog scale in the evaluation of smile esthetics. Am J Orthod Dentofacial Orthop 2009 135(4 Suppl):S61-71.
https://doi.org/10.1016/j.ajodo.2007.08.019