3. Ranjbaran M, Jafary-Manesh H, Sajjadi-Hazaneh L, Eisaabadi S, Talkhabi S, Sadat Khoshniyat A. Prevalence of low birth weight and some associated factors in Markazi province, 2013–2014. World J Med Sci 2015 12(3):252-8.
https://doi.org/10.5829/idosi.wjms.2015.12.3.93203
11. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority over-sampling technique. J Artif Intell Res 2002 16:321-57.
https://doi.org/10.1613/jair.953
13. abdulaziz Mohsen A, Alsurori M, Aldobai B, Mohsen GA. New approach to medical diagnosis using artificial neural network and decision tree algorithm: application to dental diseases. Int J Inf Eng Electron Bus 2019 11(4):52-60.
https://doi.org/10.5815/ijieeb.2019.04.06
14. Sandhu AK, Batth RS. Software reuse analytics using integrated random forest and gradient boosting machine learning algorithm. Softw Pract Exp 2021 51(4):735-47.
https://doi.org/10.1002/spe.2921
15. Suzuki K. Artificial neural networks: methodological advances and biomedical applications. Rijeka, Croatia: InTech; 2011.
17. Alanazi HO, Abdullah AH, Qureshi KN. A critical review for developing accurate and dynamic predictive models using machine learning methods in medicine and health care. J Med Syst 2017 41(4):69.
https://doi.org/10.1007/s10916-017-0715-6
18. Therneau TM, Atkinson EJ. An introduction to recursive partitioning using the RPART routines. Rochester (MN): Mayo Foundation; 1997.
21. Zahirzada A, Lavangnananda K. Implementing predictive model for low birth weight in Afghanistan. Proceedings of 2021, 13th International Conference on Knowledge and Smart Technology (KST); 2021 Jan 21–24. Bangsaen, Thailand; p. 67-72.
https://doi.org/10.1109/KST51265.2021.9415792
22. Borson NS, Kabir MR, Zamal Z, Rahman RM. Correlation analysis of demographic factors on low birth weight and prediction modeling using machine learning techniques. Proceedings of 2020, 4th World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4); 2020 Jul 27–28. London, UK; p. 169-73.
https://doi.org/10.1109/WorldS450073.2020.9210338
23. Senthilkumar D, Paulraj S. Prediction of low birth weight infants and its risk factors using data mining techniques. Proceedings of the 2015 International Conference on Industrial Engineering and Operations Management; 2015 Mar 3–5. Dubai, UAE; p. 186-94.
26. Cogendez E, Dolgun ZN, Sanverdi I, Turgut A, Eren S. Post-abortion hysteroscopy: a method for early diagnosis of congenital and acquired intrauterine causes of abortions. Eur J Obstet Gynecol Reprod Biol 2011 156(1):101-4.
https://doi.org/10.1016/j.ejogrb.2010.12.025
27. Poorolajal J, Ameri P, Soltanian A, Bahrami M. Effect of consanguinity on low birth weight: a meta-analysis. Arch Iran Med 2017;20(3):178-84.
28. Bennett RL, Motulsky AG, Bittles A, Hudgins L, Uhrich S, Doyle DL, et al. Genetic counseling and screening of consanguineous couples and their offspring: recommendations of the National Society of Genetic Counselors. J Genet Couns 2002 11(2):97-119.
https://doi.org/10.1023/A:1014593404915
29. Friede A, Baldwin W, Rhodes PH, Buehler JW, Strauss LT, Smith JC, et al. Young maternal age and infant mortality: the role of low birth weight. Public Health Rep 1987;102(2):192-9.