1. Nugroho HA, Frannita EL, Ardiyanto I, Choridah L. Computer aided diagnosis for thyroid cancer system based on internal and external characteristics. J King Saud Univ-Comput Inf Sci 2021 33(3):329-39.
https://doi.org/10.1016/j.jksuci.2019.01.007
3. Soulami KB, Kaabouch N, Saidi MN, Tamtaoui A. Breast cancer: one-stage automated detection, segmentation, and classification of digital mammograms using UNet model based-semantic segmentation. Biomed Signal Process Control 2022 66:102481.
https://doi.org/10.1016/j.bspc.2021.102481
5. Das P, Pal C, Acharyya A, Chakrabarti A, Basu S. Deep neural network for automated simultaneous intervertebral disc (IVDs) identification and segmentation of multi-modal MR images. Comput Methods Programs Biomed 2021 205:106074.
https://doi.org/10.1016/j.cmpb.2021.106074
6. Li X, Dou Q, Chen H, Fu CW, Qi X, Belavy DL, et al. 3D multi-scale FCN with random modality voxel dropout learning for intervertebral disc localization and segmentation from multi-modality MR images. Med Image Anal 2018 45:41-54.
https://doi.org/10.1016/j.media.2018.01.004
12. Veena HN, Muruganandham A, Kumaran TS. A novel optic disc and optic cup segmentation technique to diagnose glaucoma using deep learning convolutional neural network over retinal fundus images. J King Saud Univ-Comput Inf Sci 2022 34(8):6187-98.
https://doi.org/10.1016/j.jksuci.2021.02.003
13. Septiarini A, Pulungan R, Harjoko A, Ekantini R. Peripapillary atrophy detection in fundus images based on sectors with scan lines approach. Proceedings of 2018 3rd International Conference on Informatics and Computing (ICIC); 2018 Oct 17–18. Palembang, Indonesia; p. 1-6.
https://doi.org/10.1109/IAC.2018.8780490
14. Sharma A, Agrawal M, Roy SD, Gupta V, Vashisht P, Sidhu T. Deep learning to diagnose Peripapillary Atrophy in retinal images along with statistical features. Biomedical Signal Processing and Control 2021 64:102254.
https://doi.org/10.1016/j.bspc.2020.102254
15. Odstrcilik J, Kolar R, Tornow RP, Jan J, Budai A, Mayer M, et al. Thickness related textural properties of retinal nerve fiber layer in color fundus images. Comput Med Imaging Graph 2014 38(6):508-16.
https://doi.org/10.1016/j.compmedimag.2014.05.005
17. Rehman ZU, Naqvi SS, Khan TM, Arsalan M, Khan MA, Khalil MA. Multi-parametric optic disc segmentation using superpixel based feature classification. Expert Syst Appl 2019 120:461-73.
https://doi.org/10.1016/j.eswa.2018.12.008
19. Septiarini A, Harjoko A, Pulungan R, Ekantini R. Optic disc and cup segmentation by automatic thresholding with morphological operation for glaucoma evaluation. Signal Image Video Process 2017 11:945-52.
https://doi.org/10.1007/s11760-016-1043-x
21. Hasan MK, Alam MA, Elahi MT, Roy S, Marti R. DRNet: segmentation and localization of optic disc and fovea from diabetic retinopathy image. Artif Intell Med 2021 111:102001.
https://doi.org/10.1016/j.artmed.2020.102001
23. Bian X, Luo X, Wang C, Liu W, Lin X. Optic disc and optic cup segmentation based on anatomy guided cascade network. Comput Methods Programs Biomed 2020 197:105717.
https://doi.org/10.1016/j.cmpb.2020.105717
25. Yuan X, Zhou L, Yu S, Li M, Wang X, Zheng X. A multi-scale convolutional neural network with context for joint segmentation of optic disc and cup. Artif Intell Med 2021 113:102035.
https://doi.org/10.1016/j.artmed.2021.102035
26. Orlando JI, Fu H, Barbosa Breda J, van Keer K, Bathula DR, Diaz-Pinto A, et al. REFUGE challenge: a unified framework for evaluating automated methods for glaucoma assessment from fundus photographs. Med Image Anal 2020 59:101570.
https://doi.org/10.1016/j.media.2019.101570