1. McMahan B, Moore E, Ramage D, Hampson S, y Arcas BA. Communication-efficient learning of deep networks from decentralized data. Proc Mach Learn Res 2017;54:1273-82.
2. Bonawitz K, Eichner H, Grieskamp W, Huba D, Ingerman A, Ivanov V, et al. Towards federated learning at scale: System design. Proceedings of Machine Learning and Systems (MLSys); 2019 Mar 31–Apr 2. Stanford, CA; p. 374-88.
3. Konecny J, McMahan HB, Yu FX, Richtrik P, Suresh AT, Bacon D. Federated learning: strategies for improving communication efficiency [Internet]. Ithaca (NY): arXiv.org; 2016 [cited at 2023 Mar 20]. Available from:
https://doi.org/10.48550/arXiv.1610.05492
8. Li W, Milletari F, Xu D, Rieke N, Hancox J, Zhu W, et al. Privacy-preserving federated brain tumour segmentation. Suk HI, Liu M, Yan P, Lian C. In: Machine learning in medical imaging. Cham, Switzerland: Springer; 2019 133-41.
https://doi.org/10.1007/978-3-030-32692-0_16
10. Brown JS, Holmes JH, Shah K, Hall K, Lazarus R, Platt R. Distributed health data networks: a practical and preferred approach to multi-institutional evaluations of comparative effectiveness, safety, and quality of care. Med Care 2010 48(6 Suppl):S45-51.
https://doi.org/10.1097/MLR.0b013e3181d9919f
11. Hansen RA, Zeng P, Ryan P, Gao J, Sonawane K, Teeter B, et al. Exploration of heterogeneity in distributed research network drug safety analyses. Res Synth Methods 2014 5(4):352-70.
https://doi.org/10.1002/jrsm.1121
12. Toh S, Gagne JJ, Rassen JA, Fireman BH, Kulldorff M, Brown JS. Confounding adjustment in comparative effectiveness research conducted within distributed research networks. Med Care 2013 51(8 Suppl 3):S4-10.
https://doi.org/10.1097/MLR.0b013e31829b1bb1
13. Observational Health Data Sciences and Informatics (OHDSI) [Internet]. [place unknown]: OHDSI; 2022 [cited at 2023 Mar 20]. Available from:
https://www.ohdsi.org/
14. FeederNet: a distributed clinical data analysis platform in Korea [Internet]. Seongnam, Korea: Evidnet; c2022 [cited at 2023 Mar 20]. Available from:
https://feedernet.com/member/main