2. Abedini M, Codella NC, Connell JH, Garnavi R, Merler M, Pankanti S, et al. A generalized framework for medical image classification and recognition. IBM J Res Dev 2015 59(2/3):1-18.
https://doi.org/10.1147/JRD.2015.2390017
3. Haenssle HA, Fink C, Schneiderbauer R, Toberer F, Buhl T, Blum A, et al. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann Oncol 2018 29(8):1836-42.
https://doi.org/10.1093/annonc/mdy166
4. Kumar P, Srivastava MM. Example mining for incremental learning in medical imaging. Proceedings of 2018 IEEE Symposium Series on Computational Intelligence (SSCI); 2018 Nov 18–21. Bangalore, India; 48-51.
https://doi.org/10.1109/SSCI.2018.8628895
5. Yan S, Xie J, He X. DER: dynamically expandable representation for class incremental learning. Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2021 Jan 20–25. Nashville, TN, USA; p. 3014-23.
https://doi.org/10.1109/CVPR46437.2021.00303
7. Codella NC, Gutman D, Celebi ME, Helba B, Marchetti MA, Dusza SW, et al. Skin lesion analysis toward melanoma detection: a challenge at the 2017 International Symposium on Biomedical Imaging (ISBI), hosted by the International Skin Imaging Collaboration (ISIC). Proceedings of 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI); 2018 Apr 4–7. Washington, DC, USA; p. 168-72.
https://doi.org/10.1109/ISBI.2018.8363547
8. Cubuk ED, Zoph B, Mane D, Vasudevan V, Le QV. AutoAugment: learning augmentation strategies from data. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2019 Jun 15–20. Long Beach, CA, USA; p. 113-23.
https://doi.org/10.1109/CVPR.2019.00020
10. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2016 Jun 27 30. Las Vegas, NV, USA; p. 770-8.
https://doi.org/10.1109/CVPR.2016.90
11. Hajian-Tilaki K. Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian J Intern Med 2013;4(2):627-35.
12. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: visual explanations from deep networks via gradient-based localization. Proceedings of the IEEE International Conference on Computer Vision (ICCV); 2017 Oct 22–29. Venice, Italy; p. 618-26.
https://doi.org/10.1109/ICCV.2017.74
16. Althnian A, AlSaeed D, Al-Baity H, Samha A, Dris AB, Alzakari N, et al. Impact of dataset size on classification performance: an empirical evaluation in the medical domain. Appl Sci 2021 11(2):796.
https://doi.org/10.3390/app11020796
18. Lupton E. Skin: surface, substance, and design. New York (NY): Princeton Architectural Press; 2007.