6. Gaikwad SV, Chaugule A, Patil P. Text mining methods and techniques. Int J Comput Appl 2014;85(17):42-5.
8. Zhu F, Patumcharoenpol P, Zhang C, Yang Y, Chan J, Meechai A, et al. Biomedical text mining and its applications in cancer research. J Biomed Inform 2013;46(2):200-11.
https://doi.org/10.1016/j.jbi.2012.10.007
9. Johnson SB, Bylund CL. Identifying cancer treatment misinformation and strategies to mitigate its effects with improved radiation oncologist-patient communication. Pract Radiat Oncol 2023;13(4):282-5.
https://doi.org/10.1016/j.prro.2023.01.007
14. Park S, Bier LM, Park HW. The effects of infotainment on public reaction to North Korea using hybrid text mining: content analysis, machine learning-based sentiment analysis, and co-word analysis. Prof Inf 2021;30(3):e300306.
https://doi.org/10.3145/epi.2021.may.06
16. Zanini N, Dhawan V. Text mining: an introduction to theory and some applications. Res Matters 2015;(19):38-44. https://doi.org/10.17863/CAM.100316.
18. Lochter JV, Silva RM, Almeida TA. Deep learning models for representing out-of-vocabulary words. In: Cerri R, Prati RC, editors. Intelligent systems. Cham, Switzerland: Springer; 2020. p. 418-34.
https://doi.org/10.1007/978-3-030-61377-8_29
22. Loeb S, Sengupta S, Butaney M, Macaluso JN Jr, Czarniecki SW, Robbins R, et al. Dissemination of misinformative and biased information about prostate cancer on YouTube. Eur Urol 2019;75(4):564-7.
https://doi.org/10.1016/j.eururo.2018.10.056
23. Shin HS, Lee YJ. Journalists’ awareness of misinformtaion issues: focused on in-depth interviews. Korean J Journal Commun Stud 2021;65(4):239-72.
26. Im YH, Kim E, Kim KH, Kim A. News perceptions and uses among online-news users. Korean J Journal Commun Stud 2008;52(4):179-204.
29. Lee S, Jeong EL. An integrative approach to examining the celebrity endorsement process in shaping affective destination image: a K-pop culture perspectives. Tour Manag Perspect. 2023 Sep 1 48:101150.
https://doi.org/10.1016/j.tmp.2023.101150