J Korean Soc Med Inform Search

CLOSE


Healthc Inform Res > Volume 11(1); 2005 > Article
Journal of Korean Society of Medical Informatics 2005;11(1):57-70.
DOI: https://doi.org/10.4258/jksmi.2005.11.1.57    Published online March 31, 2005.
Information Extraction Using Concept Node Analysis of Brain Radiology Reports Summarization
Miyoung Kwak, Jinwook Choi
Department of Biomedical Engineering, College of Medicine, Seoul National University, Korea.
Abstract

OBJECTIVE: Electronic Medical Record contains the majority of clinical data in unstructured text. The information in the textual document can be stored in conceptual format and used to support clinical care by text summarization technique. In this study, we present Information Extraction(IE) using Concept Node(CN) which is extraction rule in case frame from brain radiology reports in SNUH(Seoul National University Hospital) for summarization.

METHOD: Following steps are performed: design conceptual model to define semantic entities as extraction templates of brain radiology report, build CN dictionary based on statistical syntactic pattern and development of parser to extract relevant information based on defined templates.

RESULTS: The three evaluation results shows that 19% precision improvement after post processing supplemental specified complex verb construction and 19.24~21.25% accurate semantic effectiveness with extracting additional Korean noun. The average of precision is 85.18%, average of recall is 93.71% and F-measure is 0.89.

CONCLUSION: Our approach has advantageous elements for different language at the same sentence. We expect this IE technology can summarize vast amount radiology texts material for clinical decision support system effectively and hope this study helps the evolution of clinical data representation in Korean medical records and its integration into the EMR in the future.

Key Words: Information Extraction, Concept Node Analysis, Radiology Report, Conceptual Model, Document Summarization
TOOLS
Share :
Facebook Twitter Linked In Google+ Line it
METRICS Graph View
  • 0 Crossref
  •    
  • 316 View
  • 0 Download
Related articles in Healthc Inform Res


ABOUT
ARTICLE CATEGORY

Browse all articles >

BROWSE ARTICLES
FOR CONTRIBUTORS
Editorial Office
1618 Kyungheegung Achim Bldg 3, 34, Sajik-ro 8-gil, Jongno-gu, Seoul 03174, Korea
Tel: +82-2-733-7637, +82-2-734-7637    E-mail: hir@kosmi.org                

Copyright © 2021 by Korean Society of Medical Informatics. All rights reserved.

Developed in M2community

Close layer
prev next