1. Woolf SH, Grol R, Hutchinson A, Eccles M, Grimshaw J. Potential benefits, limitations, and harms of clinical guidelines. BMJ 1999;318:527-530. PMID:
10024268.
2. Buchanan B, Shortliffe EH. Rule-based expert systems: the MYCIN experiments of the Stanford Heuristic Programming Project. 1984. Reading, MA: Addison-Wesley.
3. Pan F. Multi-dimensional fragment classification in biomedical text. 2006. Kingston, OT: Queen's University.
4. Xin L, Xuan-Jing H, Li-de W. Question classification by ensemble learning. Int J Comput Sci Netw Secur 2006;6:146-153.
5. Freund Y, Schapire RE. Saitta L. European Coordinating Committee for Artificial Intelligence. Associazione italiana per l'intelligenza artificiale. Experiments with a new boosting algorithm. In: Thirteenth International Conference on Machine Learning 1996;San Mateo, CA: Morgan Kaufmann Publishersn; p. 148-156.
6. Marsland S. Machine learning: an algorithmic perspective. 2009. Boca Raton, FL: Chapman & Hall/CRC.
7. Duda RO, Hart PE, Stork DG. Pattern classification. 2000. 2nd ed. New York: Wiley.
8. Salton G, McGill MJ. Introduction to modern information retrieval. 1983. New York: McGraw-Hill.
9. Domingos P, Pazzani M. On the optimality of the simple Bayesian classifier under zero-one loss. Mach Learn 1997;29:103-130.
10. Cristianini N, Shawe-Taylor J. An introduction to support vector machines and other kernel-based learning methods. 2000. Cambridge, NY: Cambridge University Press.
11. Berger AL, Della Pietra SA, Della Pietra VJ. A maximum entropy approach to natural language processing. Comput Linguist 1996;22:39-71.
12. Darroch JN, Ratcliff D. Generalized iterative scaling for log-linear models. Ann Math Statist 1972;43:1470-1480.
13. Vapnik VN. Statistical learning theory. 1998. New York: Wiley Interscienc.
14. Ethem A. Introduction to machine learning. 2004. Cambridge, MA: MIT Press.
15. Cardoso-Cachopo A, Oliveira AL. An empirical comparison of text categorization methods. Lect Notes Comput Sci 2003;2857:183-196.
16. Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res 2003;3:1157-1182.
17. Yang Y, Pedersen JO. A comparative study on feature selection in text categorization. Proceedings of ICML-97, 14th International Conference on Machine Learning 1997 Jul 8-12. Nashville, TN, USA; p. 412-420.
18. Feldman R, Sanger J. The text mining handbook: advanced approaches in analyzing unstructured data. 2007. Cambridge, NY: Cambridge University Press.
19. Welcome to Apache Nutch [Internet]. The Apache Software Foundation. c2011. cited at 2011 Sep 14. The Apache Software Foundation; Available from:
http://nutch.apache.org/
20. Apache Tika: a content analysis toolkit [Internet]. The Apache Software Foundation. c2011. cited at 2011 Sep 14. The Apache Software Foundation; Available from:
http://tika.apache.org/
22. The Stanford parser: a statistical parser [Internet]. The Stanford Natural Language Processing Group (SNLP). cited at 2011 Sep 14. The Stanford Natural Language Processing Group; Available from:
http://nlp.stanford.edu/software/lex-parser.shtml
23. Shatkay H, Pan F, Rzhetsky A, Wilbur WJ. Multi-dimensional classification of biomedical text: toward automated, practical provision of high-utility text to diverse users. Bioinformatics 2008;24:2086-2093. PMID:
18718948.
24. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, Jones DW, Materson BJ, Oparil S, Wright JT Jr, Roccella EJ. National Heart, Lung, and Blood Institute Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. National High Blood Pressure Education Program Coordinating Committee. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA 2003;289:2560-2572. PMID:
12748199.