1. Pakhomov S. Semi-supervised Maximum Entropy based approach to acronym and abbreviation normalization in medical texts Proceedings of the 40th Annual Meeting on Association for Computational Linguistics (ACL2002); 2002 Jul 6-12. Philadelphia, PA; p. 160-167.
2. Stetson PD, Johnson SB, Scotch M, Hripcsak G. The sublanguage of cross-coverage. Proc AMIA Symp 2002;742-746. PMID:
12463923.
3. Pakhomov S, Pedersen T, Chute CG. Abbreviation and acronym disambiguation in clinical discourse. AMIA Annu Symp Proc 2005;589-593. PMID:
16779108.
4. Xu H, Markatou M, Dimova R, Liu H, Friedman C. Machine learning and word sense disambiguation in the biomedical domain: design and evaluation issues. BMC Bioinformatics 2006;5(7):334PMID:
16822321.
5. Xu H, Stetson PD, Friedman C. A study of abbreviations in clinical notes. AMIA Annu Symp Proc 2007;821-825. PMID:
18693951.
6. Kuhn IF. Abbreviations and acronyms in healthcare: when shorter isn't sweeter. Pediatr Nurs 2007;33:392-398. PMID:
18041327.
7. Walsh KE, Gurwitz JH. Medical abbreviations: writing little and communicating less. Arch Dis Child 2008;93(10):816-817. PMID:
18809701.
8. Hunt DR, Verzier N, Abend SL, Lyder C, Jaser LJ, Safer N, et al. Fundamentals of medicare patient safety surveillance: intent, relevance, and transparency. In: Henriksen K, Battles JB, Marks ES, Lewin DI, editors. Advances in patient safety: from research to implementation (Volume 2: Concepts and Methodology). Rockville (MD): Agency for Healthcare Research and Quality; 2005.
9. Fan JW, Friedman C. Word sense disambiguation via semantic type classification. AMIA Annu Symp Proc 2008;177-181. PMID:
18998821.
10. Friedman C, Liu H, Shagina L, Johnson S, Hripcsak G. Evaluating the UMLS as a source of lexical knowledge for medical language processing. Proc AMIA Symp 2001;189-193. PMID:
11825178.
11. Schuemie MJ, Kors JA, Mons B. Word sense disambiguation in the biomedical domain: an overview. J Comput Biol 2005;12:554-565. PMID:
15952878.
12. Kaplan A. An experimental study of ambiguity and context. Mech Transl 1950;2(2):39-46.
13. Choueka Y, Lusignan S. Disambiguation by short contexts. Comput Hum 1985;19(3):147-157.
14. Joshi M, Pakhomov S, Pedersen T, Chute CG. A comparative study of supervised learning as applied to acronym expansion in clinical reports. AMIA Annu Symp Proc 2006;399-403. PMID:
17238371.
15. Xu H, Stetson PD, Friedman C. Methods for building sense inventories of abbreviations in clinical notes. J Am Med Inform Assoc 2009;16(1):103-108. PMID:
18952935.
16. Savova GK, Coden AR, Sominsky IL, Johnson R, Ogren PV, de Groen PC, et al. Word sense disambiguation across two domains: biomedical literature and clinical notes. J Biomed Inform 2008;41(6):1088-1100. PMID:
18375190.
17. Manning CD, Schutze H. Foundations of statistical natural language processing. Cambridge (MA): MIT Press; 1999.
18. Aronson AR. Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program. Proc AMIA Symp 2001;17-21. PMID:
11825149.
19. McCray AT, Burgun A, Bodenreider O. Aggregating UMLS semantic types for reducing conceptual complexity. Stud Health Technol Inform 2001;84(Pt 1):216-220. PMID:
11604736.
20. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The WEKA data mining software: an update. ACM SIGKDD Explor 2009;11(1):10-18.
21. Meystre SM, Savova GK, Kipper-Schuler KC, Hurdle JF. Extracting information from textual documents in the electronic health record: a review of recent research. Yearb Med Inform 2008;128-144. PMID:
18660887.
23. University of Pittsburgh NLP Repository [Internet]. Pittsburgh (PA): Department of Biomedical Informatics, University of Pittsburgh; c2014. cited at 2015 Jan 5. Available from:
http://www.dbmi.pitt.edu/nlpfront
24. Liu H, Lussier YA, Friedman C. A study of abbreviations in the UMLS. Proc AMIA Symp 2001;393-397. PMID:
11825217.
25. Zhou W, Torvik VI, Smalheiser NR. ADAM: another database of abbreviations in MEDLINE. Bioinformatics 2006;22(22):2813-2818. PMID:
16982707.
26. Melton GB, Moon S, McInnes B, Pakhomov S. Automated identification of synonyms in biomedical acronym sense inventories Proceedings of the NAACL HLT 2010 Second Louhi Workshop on Text and Data Mining of Health Documents; 2010 Jun 5. Los Angeles, CA; p. 46-52.
27. Resnik P, Yarowsky D. Distinguishing systems and distinguishing senses: new evaluation methods for word sense disambiguation. Nat Lang Eng 1999;5(2):113-133.
28. Leroy G, Rindflesch TC. Using symbolic knowledge in the UMLS to disambiguate words in small datasets with a naïve Bayes classifier. Stud Health Technol Inform 2004;107(Pt 1):381-385. PMID:
15360839.
29. Stevenson M, Guo Y, Amri AA, Gaizauskas R. Disambiguation of biomedical abbreviations Proceedings of the Workshop on Current Trends in Biomedical Natural Language Processing (BioNLP); 2009 Jun 4-5. Boulder, CO; p. 71-79.
30. Liu H, Teller V, Friedman C. A multi-aspect comparison study of supervised word sense disambiguation. J Am Med Inform Assoc 2004;11(4):320-331. PMID:
15064284.