1. Rajaee SS, Bae HW, Kanim LE, Delamarter RB. Spinal fusion in the United States: analysis of trends from 1998 to 2008. Spine (Phila Pa 1976) 2012;37(1):67-76. PMID:
21311399.
2. Jancuska JM, Hutzler L, Protopsaltis TS, Bendo JA, Bosco J. Utilization of lumbar spinal fusion in New York State: trends and disparities. Spine (Phila Pa 1976) 2016;41(19):1508-1514. PMID:
26977849.
3. Rimler SB, Gale BD, Reede DL. Diagnosis-related groups and hospital inpatient federal reimbursement. Radiographics 2015;35(6):1825-1834. PMID:
26466189.
4. Hsiao WC, Sapolsky HM, Dunn DL, Weiner SL. Lessons of the New Jersey DRG payment system. Health Aff (Millwood) 1986;5(2):32-45. PMID:
3091466.
5. Ugiliweneza B, Kong M, Nosova K, Huang KT, Babu R, Lad SP, et al. Spinal surgery: variations in health care costs and implications for episode-based bundled payments. Spine (Phila Pa 1976) 2014;39(15):1235-1242. PMID:
24831503.
6. Wright DJ, Mukamel DB, Greenfield S, Bederman SS. Cost variation within spinal fusion payment groups. Spine (Phila Pa 1976) 2016;41(22):1747-1753. PMID:
27111760.
7. National Health Research Institutes. Background of National Health Insurance Research Database in Taiwan [Internet]. Miaoli County, Taiwan: National Health Research Institutes; c2016. cited at 2018 Jan 10. Available from:
http://nhird.nhri.org.tw/en/index.html
9. Tomar D, Agarwal S. A survey on data mining approaches for healthcare. Int J Biosci Biotechnol 2013;5(5):241-266.
10. Moon M, Lee SK. Applying of decision tree analysis to risk factors associated with pressure ulcers in long-term care facilities. Healthc Inform Res 2017;23(1):43-52. PMID:
28261530.
11. Yahya N, Ebert MA, Bulsara M, House MJ, Kennedy A, Joseph DJ, et al. Statistical-learning strategies generate only modestly performing predictive models for urinary symptoms following external beam radiotherapy of the prostate: a comparison of conventional and machine-learning methods. Med Phys 2016;43(5):2040-2052. PMID:
27147316.
12. Walid MS, Robinson JS Jr. Economic impact of comorbidities in spine surgery. J Neurosurg Spine 2011;14(3):318-321. PMID:
21235301.
13. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority over-sampling technique. J Artif Intell Res 2002;16:321-357.
14. Han J, Kamber M, Pei J. Data mining: concepts and techniques. 3rd ed. Amsterdam: Elsevier; 2011.
15. Miranda E, Irwansyah E, Amelga AY, Maribondang MM, Salim M. Detection of cardiovascular disease risk's level for adults using naive Bayes classifier. Healthc Inform Res 2016;22(3):196-205. PMID:
27525161.
16. à Cortes C, Vapnik V. Support-vector networks. Machine Learning 1995;20(3):273-297.
18. Quinlan JR. Induction of decision trees. Mach Learn 1986;1(1):81-106.
19. Archana S, Elangovan K. Survey of classification techniques in data mining. Int J Comput Sci Mob Appl 2014;2(2):65-71.
20. Sanz J, Paternain D, Galar M, Fernandez J, Reyero D, Belzunegui T. A new survival status prediction system for severe trauma patients based on a multiple classifier system. Comput Methods Programs Biomed 2017;142:1-8. PMID:
28325437.
21. Habibi S, Ahmadi M, Alizadeh S. Type 2 diabetes mellitus screening and risk factors using decision tree: results of data mining. Glob J Health Sci 2015;7(5):304-310. PMID:
26156928.
22. Breiman L. Random forests. Mach Learn 2001;45(1):5-32.
23. Raju D, Su X, Patrician PA, Loan LA, McCarthy MS. Exploring factors associated with pressure ulcers: a data mining approach. Int J Nurs Stud 2015;52(1):102-111. PMID:
25192963.
24. Bellazzi R, Zupan B. Predictive data mining in clinical medicine: current issues and guidelines. Int J Med Inform 2008;77(2):81-97. PMID:
17188928.
25. Bradywood A, Farrokhi F, Williams B, Kowalczyk M, Blackmore CC. Reduction of inpatient hospital length of stay in lumbar fusion patients with implementation of an evidence-based clinical care pathway. Spine (Phila Pa 1976) 2017;42(3):169-176. PMID:
27213939.
26. Kulkarni VY, Sinha PK. Random forest classifiers: a survey and future research directions. Int J Adv Comput 2013;36(1):1144-1153.
27. Hu H, Li J, Plank A, Wang H, Daggard G. A comparative study of classification methods for microarray data analysis Proceedings of the 5th Australasian Conference on Data Mining and Analystics; 2006 Nov 29. Sydney, Australia; p. 33-37.
28. Masetic Z, Subasi A. Congestive heart failure detection using random forest classifier. Comput Methods Programs Biomed 2016;130:54-64. PMID:
27208521.
29. Allyn J, Allou N, Augustin P, Philip I, Martinet O, Belghiti M, et al. A comparison of a machine learning model with EuroSCORE II in predicting mortality after elective cardiac surgery: a decision curve analysis. PLoS One 2017;12(1):e0169772. PMID:
28060903.