2. Park J, Lim T. Korean Triage and Acuity Scale (KTAS). J Korean Soc Emerg Med 2017;28(6):547-551.
3. Ryu JH, Min MK, Lee DS, Yeom SR, Lee SH, Wang IJ, et al. Changes in relative importance of the 5-level triage system, Korean Triage and Acuity Scale, for the disposition of emergency patients induced by forced reduction in its level number: a multi-center registry-based retrospective cohort study. J Korean Med Sci 2019;34(14):e114. PMID:
30977315.
4. Kwon H, Kim YJ, Jo YH, Lee JH, Lee JH, Kim J, et al. The Korean Triage and Acuity Scale: associations with admission, disposition, mortality and length of stay in the emergency department. Int J Qual Health Care 2019;31(6):449-455. PMID:
30165654.
5. Hinson JS, Martinez DA, Cabral S, George K, Whalen M, Hansoti B, et al. Triage performance in emergency medicine: a systematic review. Ann Emerg Med 2019;74(1):140-152. PMID:
30470513.
7. Nemati S, Holder A, Razmi F, Stanley MD, Clifford GD, Buchman TG. An interpretable machine learning model for accurate prediction of sepsis in the ICU. Crit Care Med 2018;46(4):547-553. PMID:
29286945.
8. Gupta A, Liu T, Shepherd S, Paiva W. Using statistical and machine learning methods to evaluate the prognostic accuracy of SIRS and qSOFA. Healthc Inform Res 2018;24(2):139-147. PMID:
29770247.
9. Park JH, Shin SD, Song KJ, Hong KJ, Ro YS, Choi JW, et al. Prediction of good neurological recovery after out-of-hospital cardiac arrest: a machine learning analysis. Resuscitation 2019;142:127-135. PMID:
31362082.
10. Stewart J, Sprivulis P, Dwivedi G. Artificial intelligence and machine learning in emergency medicine. Emerg Med Australas 2018;30(6):870-874. PMID:
30014578.
11. Hong WS, Haimovich AD, Taylor RA. Predicting hospital admission at emergency department triage using machine learning. PLoS One 2018;13(7):e0201016. PMID:
30028888.
12. Goto T, Camargo CA Jr, Faridi MK, Freishtat RJ, Hasegawa K. Machine learning-based prediction of clinical outcomes for children during emergency department triage. JAMA Netw Open 2019;2(1):e186937. PMID:
30646206.
13. Kwon JM, Lee Y, Lee Y, Lee S, Park H, Park J. Validation of deep-learning-based triage and acuity score using a large national dataset. PLoS One 2018;13(10):e0205836. PMID:
30321231.
14. Raita Y, Goto T, Faridi MK, Brown DFM, Camargo CA Jr, Hasegawa K. Emergency department triage prediction of clinical outcomes using machine learning models. Crit Care 2019;23(1):64. PMID:
30795786.
15. Levin S, Toerper M, Hamrock E, Hinson JS, Barnes S, Gardner H, et al. Machine-learning-based electronic triage more accurately differentiates patients with respect to clinical outcomes compared with the emergency severity index. Ann Emerg Med 2018;71(5):565-574.e2. PMID:
28888332.
16. Sterling NW, Patzer RE, Di M, Schrager JD. Prediction of emergency department patient disposition based on natural language processing of triage notes. Int J Med Inform 2019;129:184-188. PMID:
31445253.
17. McKinney W. Data structures for statistical computing in python Proceedings of the 9th Python in Science Conference; 2010 Jun 28-Jul 3. Austin, TX; p. 51-56.
18. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: machine learning in Python. J Mach Learn Res 2011;12:2825-2830.
20. Breiman L. Random forests. Mach Learn 2001;45(1):5-32.
21. Fernandez-Delgado M, Cernadas E, Barro S, Amorim D. Do we need hundreds of classifiers to solve real world classification problems? J Mach Learn Res 2014;15(1):3133-3181.
22. Chen T, Guestrin C. XGBoost: a scalable tree boosting system Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2016 Aug 13-17. San Francisco, CA; 785: 794.
23. Nielsen D. Tree boosting with XGBoost: why does XGBoost win “every” machine learning competition? [master's thesis]. Trondheim, Norway: Norwegian University of Science and Technology; 2016.
24. Passalis N, Tefas A. Entropy optimized feature-based bag-of-words representation for information retrieval. IEEE Trans Knowl Data Eng 2016;28(7):1664-1677.
25. Sidorov G, Velasquez F, Stamatatos E, Gelbukh A, Chanona-Hernandez L. Syntactic n-grams as machine learning features for natural language processing. Expert Syst Appl 2014;41(3):853-860.
26. Park JB, Lee J, Kim YJ, Lee JH, Lim TH. Reliability of Korean Triage and Acuity Scale: interrater agreement between two experienced nurses by real-time triage and analysis of influencing factors to disagreement of triage levels. J Korean Med Sci 2019;34(28):e189. PMID:
31327176.
27. Moon SH, Shim JL, Park KS, Park CS. Triage accuracy and causes of mistriage using the Korean Triage and Acuity Scale. PLoS One 2019;14(9):e0216972. PMID:
31490937.
28. Levis T, Schwartz D, Bitan Y. Triage nurses decision-support application design. Proc Int Symp Hum Factors Ergon Healthc 2018;7(1):52-55.
29. Dehghani Soufi M, Samad-Soltani T, Shams Vahdati S, Rezaei-Hachesu P. Decision support system for triage management: a hybrid approach using rule-based reasoning and fuzzy logic. Int J Med Inform 2018;114:35-44. PMID:
29673601.