
I. Introduction 

Artificial intelligence (AI) has recently emerged as a promis-

ing tool in medical research and applications [1,2]. The per-
formance of AI, particularly in machine learning and deep 
learning, improves and stabilizes with access to large datas-
ets. Consequently, researchers have been motivated to amass 
substantial amounts of data, often referred to as big data. 
However, traditional AI models necessitate centralized data 
repositories, which pose significant concerns for the protec-
tion of sensitive medical information. In response, privacy-
protection regulations such as the General Data Protection 
Regulation (GDPR) in the European Union [3], the Health 
Insurance Portability and Accountability Act (HIPAA) in the 
United States [4], and the Personal Information Protection 
Act in Korea [5] have been enacted to secure personal data, 
including medical and healthcare records. As a result, medi-
cal AI development must adhere to these regulations, requir-
ing researchers to implement appropriate privacy-preserving 
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methods.
	 Several methods for protecting privacy have been pro-
posed, including de-identification techniques such as differ-
ential privacy [6,7], the generation of synthetic data [8-10], 
homomorphic encryption [11-13], and federated learning 
(FL) [14]. Our focus is on the privacy-preserving attributes 
of FL. The process of FL is as follows: each client indepen-
dently trains a model on their local data, ensuring that in-
dividual data remains secure and is not exposed externally. 
The clients then transmit their model parameters to a central 
server. This server aggregates the parameters received from 
all clients to create a global model. Once the central server 
distributes the global model back to the clients, they per-
form additional local training using this model. The updated 
parameters are then sent back to the central server, which 
uses them to develop the subsequent iteration of the global 
model. 
	 The fact that FL utilizes local client resources without the 
need for centralized resources and data has attracted inter-
est as a privacy-preserving alternative. This is particularly 
relevant for hospitals, which often hold clinical data but are 
hesitant to share or expose the data due to privacy concerns. 
Originally, FL was proposed to leverage the unused resources 
of handheld devices. The primary distinction between FL in 
institutional settings, such as hospitals (referred to as on-site 
FL), and FL that taps into the resources of handheld devices 
(known as on-device FL), lies in the number of clients. On-
device FL typically involves a significantly larger number of 
clients than on-site FL, where the clients often form a data 
silo and number in the single to double digits. Since medical 
data are housed within a hospital, FL involving medical data 
typically takes the form of on-site FL.
	 Review papers on FL in the medical domain have been 
published [15-19]; however, these studies have only intro-
duced a limited number of examples of medical FL research. 
Our study differs from existing FL reviews by concentrating 
on specific instances of medical FL research. Additionally, 
we have organized the selected FL papers according to (1) 
the types of data utilized, (2) the targeted disease, (3) the 
use of an open dataset, (4) the local model of FL, and (5) the 
neural network model employed. This study categorizes and 
analyzes current medical FL research to provide insights into 
areas that have been well-explored and those that remain 
underexplored.

II. Methods 

A literature search was conducted using the keywords "fed-

erated learning" combined with "medical," "healthcare," or 
"clinical" on Google Scholar and PubMed. This search took 
place in September 2022 and was not restricted by publica-
tion year. Initially, the search yielded 129,000 papers on 
Google Scholar and 173 on PubMed. We arbitrarily chose to 
review the first 400 articles listed on Google Scholar, which is 
more than double the number of articles found on PubMed. 
From this initial set of 400 papers, we carefully selected 58 
papers by applying specific exclusion criteria. These criteria 
excluded papers that only presented methodology without 
using medical data, papers that were inaccessible or could 
not be downloaded, and studies that were duplicates.
	 To extract insights from the papers we reviewed, we orga-
nized the studies according to several criteria: (1) the types 
of data utilized, including images, free text, signals, and lab-
oratory data; (2) the disease of interest; (3) the employment 
of open datasets; (4) the type of local model applied in FL, 
distinguishing between machine learning and neural net-
work models; and (5) the implementation of neural network 
models within the context of FL.
	 According to previous literature reviews on FL [15-17,20], 
heterogeneity and security concerns were frequently dis-
cussed. Therefore, we explored the extent to which studies 
addressed these issues. We also examined whether any of 
the papers proposed countermeasures to mitigate these con-
cerns.

III. Results

According to our literature survey, the first article [14] on FL 
was published in 2016 and the first article [21] on the medi-
cal applications of FL was published in 2019. In 2019, three 
articles were published, followed by 11 in 2020, 29 in 2021, 
and 15 in 2022. This trend demonstrates a growing interest 
in FL research within the medical field. Table 1 provides a 
summary of these studies, categorizing them by their target 
diseases and the types of data utilized [21-78].

1. Data Types
The most frequently utilized data type in the reviewed 
studies was image data, represented in 36 studies. This was 
followed by laboratory data in nine studies, free text and sig-
nals, each in six studies, mobile health data in a single study, 
and genomic data also in one study. Among the 58 studies 
reviewed, only one combined two types of data—image and 
laboratory data [35].
	 Among the 36 studies that used image data, the distribu-
tion was as follows: 24 studies used radiology images, six 
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Table 1. Summary of data types, target diseases, and key findings of federated learning (FL) medical-domain research

Reference Data type Target disease Key finding

[21-27] Image Cancer FL with radiology images was used in cancer research.
[28-33] Image Cancer FL was used to study pathological images of cancers.
[34] Image Thyroid nodule Ultrasound image analysis using FL was utilized to predict whether 

thyroid nodules were benign or malignant.
[35] Image,  

Lab data
COVID-19 A model was built using FL with data from over 20 institutions to predict 

the future oxygen requirements of symptomatic COVID-19 patients.
[36-43] Image COVID-19 COVID-19 detection models using FL were built.
[44-46] Image - Radiology image reconstruction models using FL were built.
[47] Image - FL was used to build a model for breast density classification using breast 

images from seven multinational clinical institutions.
[48] Image Diabetic retinopathy A system that utilized FL with differentially private stochastic gradient 

descent, in combination with secure aggregation, was proposed.
[21,22,27,49-51] Image Nervous system 

diseases, -
FL was used in studies of brain tumors, autism spectrum disorders, brain 

age prediction, and multiple sclerosis. These studies showed that FL can 
be applied to research using nervous system radiology images.

[52] Image Cardiovascular 
disease

FL was used to diagnose cardiovascular disease using cardiac MRI data.

[53,54] Image Skin diseases Models for detecting skin diseases were built using FL.
[55] Image - A method for federated semi-supervised learning of surgical phases was 

presented.
[56] Image Melanoma FL was used in a study on melanoma detection using skin images.
[57,58] Free text Psychiatric disease The potential of FL for clinical psychiatry was highlighted.
[59-61] Free text Vaccine adverse 

events, -
Named entity recognition, entity recognition, and relation extraction tasks 

were performed with FL. It was demonstrated that natural language 
processing models can be built using FL.

[62] Free text - A personalized clinical decision support system based on FL to assist 
healthcare professionals in medical diagnosis was proposed.

[63-65] Signal Major depressive 
disorder, arrhythmia, 
stress 

FL was used to study major depressive disorder, arrhythmia, and stress 
using heart-activity data.

[66] Signal Parkinson's disease The first federated transfer learning framework for wearable healthcare 
was proposed.

[67,68] Signal - An FL-based health-monitoring system was proposed.
[69] Lab data Lung cancer, COPD FL models were trained to predict the risks of diseases associated with 

tobacco and radon using data from electronic health records.
[70] Lab data Adverse drug reaction FL was used to predict adverse drug reactions using electronic health data. 
[71-73] Lab data COVID-19 The relationship between COVID-19, mortality, and diseases (acute 

kidney injury, and cancer) was studied using FL.
[73-76] Lab data Mortality A model to predict mortality in intensive care units using FL was built.
[77] Other Depression An FL-based method for detecting depression was proposed.
[78] Other Heart failure Based on the patient's genomic data, the risk of specific heart failure or 

cancer diseases was predicted.
The key findings are modified summary sentences from the references. “-” in the target disease column indicates no target disease.
MRI, magnetic resonance imaging; COPD, chronic obstructive pulmonary disease; Lab data, laboratory data.
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studies utilized pathology images, three studies focused on 
skin images, two studies examined ultrasound images, and 
two studies involved other types of images, including fundus 
and surgical images. Notably, one study utilized two types 
of images: radiology and ultrasound [43]. Of the 24 stud-
ies involving radiology images, chest radiology images were 
the most common, with 10 studies [26,35-43] examining 
chest X-rays and chest computed tomography (CT) scans. 
Six studies investigated nervous system radiology images, 
delving into topics such as autism spectrum disorder using 
functional magnetic resonance imaging (MRI) [49], brain 
age prediction [50], brain tumor segmentation [21], multiple 
sclerosis lesion segmentation [51], brain tumor MRI [22], 
and glioblastoma using multiparametric MRI [27]. Ad-
ditionally, three studies were dedicated to radiology image 
reconstruction, with two focusing on MRI [44,45] and one 
on CT [46]. The remaining five studies explored a variety of 
radiology images, including mammography [24,47], prostate 
MRI [23], cardiac MRI [52], and pancreatic CT [25]. Pathol-
ogy images were the focus of six studies, which included 
applications of differential privacy to pathological images 
[28], use of the open datasets Camelyon16 and Camelyon17 
[29], analysis of gigapixel whole-slide images [30], brain 
pathology segmentation [31], colorectal cancer data analysis 
[32], and examination of tumor-infiltrating lymphocytes in 
whole-slide images [33]. Three studies focused on skin im-
ages, tackling issues such as skin disease detection using the 
Dermatology Atlas dataset [53,54] and melanoma detection 
with the dermoscopic skin lesion image dataset [56]. Two 
studies involved ultrasound images [34,43], and the final two 
studies used other image types, specifically fundus [48] and 
surgical images [55]. 
	 The use of free text in studies was primarily associated with 
natural language processing, as evidenced by six studies. 
These investigations encompassed a range of applications: a 
violence risk assessment [57], benchmarking bidirectional 
encoder representations from transformers (BERT) models 
[58], a named entity recognition task [59], detecting adverse 
events related to vaccines [60], developing a medical relation 
extraction model [61], and creating a deep learning-based 
personalized clinical decision support system [62].
	 Signal data primarily consisted of time-series data obtained 
from medical devices, and six case studies used this type of 
data. Research on FL using signal data has largely concen-
trated on disease research involving heart-activity data or the 
development of health-monitoring systems. The identified 
objectives for FL research using signal data included predict-
ing the severity of major depressive disorder based on heart 

rate variability [63], detecting arrhythmias through elec-
trocardiography [64], automatically detecting stress using 
heart-activity signals [65], implementing wearable healthcare 
solutions [66], monitoring health at home [67], and develop-
ing health-monitoring systems that employ wearable sensing 
devices [68].
	 Furthermore, nine studies utilized laboratory data. These 
studies focused on predicting various outcomes, including 
disease risks from electronic health record systems [69], 
adverse drug reactions [70], mortality within 7 days of hos-
pitalization in COVID-19 patients [71], acute kidney injury 
within three and seven days of admission [72], patient mor-
tality and length of stay in the intensive care unit [74], and 
intensive care unit mortality using the MIMIC-III bench-
mark database [76]. Additionally, they involved evaluating 
FL with existing datasets [73] and assessing the performance 
of FL on two typical electronic health record machine learn-
ing tasks [75].
	 Data that did not fall into the categories of image, free text, 
signals, or laboratory data were categorized as “other.” Two 
studies that belonged to the “other” category were depression 
detection from mobile data [77] and prediction of disease 
from genomic data [78].

2. Target Diseases
The most common target disease was cancer (17 studies, one 
of which [34] involved thyroid nodules) [21-34,56,69,73]. 
The second most common target disease was COVID-19 (12 
studies) due to the recent worldwide COVID-19 pandemic 
[35-43,71-73]. The remaining 29 studies did not include spe-
cific target diseases. 

3. Use of Open Datasets
We evaluated whether the data utilized in the studies were 
open or private [21-78] (Table 2), as the source of the data is 
important in medical research. Overall, 37 studies used open 
data, 11 used private data, and 10 used a combination. As 
can be seen, open datasets were primarily used. 

4. Local Models Used in FL
We investigated whether the local models used for FL re-
search were deep or machine learning [21-78] (Table 2). In 
total, 53 used neural networks as the local models, one used 
machine learning as the local model, and four used a com-
bination of both. Thus, the majority of the investigated FL 
studies chose neural networks as the local models.
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5. Utilization of Neural Network Models in FL
Among the studies we evaluated, neural network algorithms 
were employed in most cases [21-77,79,80], with only one 
study being the exception [78] (Table 3). A significant num-
ber of these studies, 35 to be exact, utilized convolutional 
neural networks (CNNs) as their primary model [81]. CNNs 
were predominantly used in research involving image and 
signal data [63,64,66]. In contrast, studies that focused on 
free text primarily implemented recurrent neural networks, 
including long short-term memory networks [82], and some 

incorporated the more recent BERT [83]. For laboratory test 
data, which typically has lower complexity compared to im-
age or signal data, simpler neural network architectures were 
favored, such as shallow networks with one or two hidden 
layers, or multilayer perceptron models
	 Regarding optimization methods, the Adam optimizer [84] 
emerged as the most commonly used, being adopted in 35 of 
the 57 studies. The most widely employed method was sto-
chastic gradient descent (SGD) [85], with mini-batch SGD 
being the second most utilized, serving as the optimization 

Table 2. Summary of federated learning studies: the usage of open datasets and the type of local model used for federated learning

Reference Open data vs. private data Local model

[21,22,25,26,28,29,32,33,37-41,43,45,46,48-50, 
52-54,56,58-62,64,67,68,74-77]

Open data Neural network

[34-36,47,57,63,65,69] Private data Neural network
[23,24,27,30,31,42,44,51,55,66] Open data + Private data Neural network
[73] Open data Neural network, Machine learning
[70-72] Private data Neural network, Machine learning
[78] Open data Machine learning

Table 3. Neural network models used in federated learning

Reference Model Optimization method

[21,23-25,27,29,33,34,37,40,42, 
43,46,47,52-55]

CNN Adam

[22,26,44,51] CNN (U-Net) Adam, SGD
[28] Memory-based exchangeable model [79] Adam
[36,39,48,50,56,63,64,66] CNN SGD, Mini-batch SGD
[38,41,45] CNN RMSProp, Not described, Adamax
[30,59] Combination of CNN and others Adam
[35] Deep & cross network [80] Adam
[32] GAN Adam
[58] BERT Adam
[61] BERT Cross entropy
[62] RNN Not described
[60,68] BiLSTM Mini-batch SGD, SGD
[31,67,74] Autoencoder SGD, Adam
[49,71,72] MLP (three hidden layers) Adam
[65,69,75] Shallow neural network (two hidden layers) Adam, SGD, Not described
[57,70,73] Shallow neural network (one hidden layer) Mini-batch gradient descent, SGD, Adam
[76] RNN, LSTM, GRU, and CNN Adam
[77] Later fusion model RMSProp

CNN: convolutional neural network, SGD: stochastic gradient descent, GAN: generative adversarial networks, BERT: bidirectional 
encoder representations from transformers, RNN: recurrent neural network, BiLSTM: bidirectional long short-term memory, MLP: 
multilayer perceptron, GRU: gated recurrent unit.
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technique in 13 studies. Notably, two studies did not explic-
itly specify the optimization method employed [38,62].

6. Commonly Mentioned Issues 
Although many algorithms employed in FL assume indepen-
dent and identically distributed (IID) data, real-world data 
often deviate from this assumption, being non-IID. FedAvg 
[14], a prominent algorithm in FL, demonstrates slow con-
vergence and suboptimal accuracy when dealing with non-
IID data. Since the data characteristics vary across clients, 
the performance of the global model suffers. This problem is 
known as the heterogeneity issue.
	 FL offers advantages in terms of privacy; however, it is still 
susceptible to security attacks. The most concerning attack 
in the medical field is the inference attack, which aims to de-
duce sensitive information from the learning data. Research 
on inference attacks in FL includes a study on the use of 
generative adversarial networks for such attacks [86], an ex-
amination of inference attacks in vertical FL [87], an analysis 
of membership inference attacks that could lead to privacy 
breaches [88], and an investigation into source inference at-
tacks that can extract more information than traditional in-
ference methods [89]. A poisoning attack compromises the 
performance of FL by reducing the accuracy of the global 
model through malicious updates. Various studies have ex-
plored poisoning attacks, including those on model poison-
ing that aim to cause misclassification [90,91], research on 
data poisoning where malicious participants submit updates 
from incorrectly labeled data [92], a study on FL poisoning 
attacks utilizing generative adversarial networks [93], and an 
examination of FL's vulnerability to Sybil-based poisoning 
attacks [94]. Collectively, these security threats [95] to FL are 
referred to as "security issues."
	 Among the 58 articles, 42 (72%) mentioned non-IID data 
or heterogeneity issues, and 29 (50%) noted security is-
sues. In addition, 22 articles (37%) pointed out both issues, 
whereas 10 articles (17%) mentioned neither issue.

1) Countermeasures against the heterogeneity issue 
To address the issue of heterogeneity, researchers have pro-
posed algorithms that perform well with non-IID data. Two 
notable algorithms are as follows: Li et al. [96] introduced 
FedProx, which enhances stability in heterogeneous environ-
ments by incorporating a proximal term. Karimireddy et al. 
[97] identified that data heterogeneity can cause client drift, 
leading to a decline in FL performance. To counteract this, 
they developed the SCAFFOLD algorithm, which corrects 
client drift and has been shown to be at least as efficient as 

SGD. Li et al. [98] evaluated the accuracy and communica-
tion efficiency of several leading FL algorithms, including 
FedAvg, FedProx, SCAFFOLD, and FedNova, across a range 
of non-IID scenarios. Their experiments indicated that no 
single algorithm consistently outperformed the others under 
the various non-IID conditions. This issue of heterogeneity 
has also been noted in the widely studied context of hand-
held device-based FL [96]. However, FL in hospitals (on-
site FL) involves a significantly smaller number of clients—
ranging from single to double digits—which can make the 
model more susceptible to bias and exacerbate heterogeneity 
issues. Consequently, these issues are more pronounced in 
hospital FL, necessitating the development of specific coun-
termeasures. Despite extensive research aimed at enhancing 
the performance of global models in non-IID situations, an 
approach that is both cost-effective and universally effective 
in all non-IID contexts has yet to be discovered [98].

2) Countermeasures against security issues
In medical FL, the use of patient data necessitates stringent 
security and privacy protections. To protect against security 
threats, measures such as differential privacy and homomor-
phic encryption can be implemented. Our review of FL stud-
ies revealed that 11 papers [21,24,28,30,35,48,49,58,60,73,78] 
employed differential privacy as a security measure, while four 
papers [36,48,66,67] utilized homomorphic encryption. Differ-
ential privacy emerged as the most commonly adopted secu-
rity measure. It can be easily applied by adding Gaussian noise 
[6,24,30,48]. In contrast, homomorphic encryption is more 
challenging to implement than differential privacy and incurs 
additional computational costs [11,99,100]. Consequently, 
differential privacy has been more frequently adopted than ho-
momorphic encryption in medical FL research.

IV. Discussion

In this survey, studies within the medical domain that uti-
lized FL were reviewed. The selected FL papers were catego-
rized based on the following criteria: (1) the types of data 
used, (2) the target disease, (3) the use of an open dataset, 
(4) the local model of FL, and (5) the employment of neural 
network models in FL. 
	 Most studies used image data, while relatively few studies 
utilized free text, signal, and laboratory data. In the broader 
context of medical research, free text, signals, and laboratory 
data are frequently used; however, these data types appear 
to be underrepresented in the field of medical FL research. 
Cancer and COVID-19 emerged as the most frequently 
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studied diseases in medical FL. In contrast, there have been 
relatively few FL studies focusing on cardiovascular diseases 
[101,102] and neurological disorders [103,104], such as Al-
zheimer's disease, epilepsy, Parkinson’s disease, and schizo-
phrenia, despite the active research efforts in these areas. 
Upon examining the data types and target diseases within 
medical FL research, a pattern of high research frequency 
for certain data types and diseases becomes evident. It is 
noteworthy that among the data types commonly used in 
medical research and the diseases that are the focus of active 
study, there are instances where FL is less frequently applied. 
This observation suggests that FL has the potential to be lev-
eraged across a diverse range of data types and for the study 
of various diseases.
	 We also investigated whether the datasets used were open 
or private. Most studies utilized open datasets, while a 
smaller number relied on proprietary data. FL appears to be 
in its nascent phase, with open datasets predominantly used 
for initial testing purposes, such as performance validation. 
However, as the field matures and the volume of research 
utilizing authentic medical data grows, the utilization of pro-
prietary data is expected to rise accordingly. 
	 Most local models for medical FL research were neural 
networks, while very few were machine learning models. 
Considering that certain types of medical data, such as labo-
ratory results, are captured in tabular formats that exhibit 
low data complexity [69-78], there is a need for FL research 
that utilizes machine learning. Machine learning models 
typically have lower complexity than neural network models 
and could be more suitable for these types of data.
	 We investigated neural network models and optimiza-
tion methods. CNNs, the most widely utilized type of deep 
learning model, were employed in 35 out of 57 studies. The 
prevalent use of CNNs is likely due to the fact that image 
data were the most common type of data in these studies. 
Additionally, CNNs have been applied to the analysis of 
signal data [63,64,66]. The optimization method most fre-
quently used was Adam, which was adopted in 35 studies. 
The application of Adam optimization was not limited to any 
particular data type; rather, it was employed across a broad 
range of data types. SGD was the optimization method used 
in 13 studies. Similar to Adam optimization, SGD was not 
predominantly used for any specific data types. 
	 Moreover, we investigated the heterogeneity and security 
issues, which have been examined in many previous review 
papers. We found that although many algorithms have been 
proposed to address the issue of heterogeneity, there is still 
no low-cost, universally effective solution for all non-IID 

scenarios [98]. Given that FL in hospitals is a form of cross-
silo FL with a limited number of clients, heterogeneity issues 
are more pronounced, necessitating further research.
	 Furthermore, we identified numerous security threats 
within FL, and measures such as differential privacy and 
homomorphic encryption have been proposed to mitigate 
these risks. Specifically, medical FL involves the use of pa-
tient data, which necessitates robust privacy and security 
safeguards. This makes it necessary to implement security 
enhancement measures, including differential privacy, to 
protect this sensitive information.
	 Currently, FL in the medical field is in its early stages, with 
a significant amount of research focusing on specific data 
types, such as imaging data, and particular diseases, such as 
cancer and COVID-19. As the field evolves, it is anticipated 
that FL will be applied to a broader range of data types and 
disease research. While many studies at present concentrate 
on open data, it is expected that the utilization of private data 
in research will grow in the future. Most FL local models 
in use today are based on neural networks. However, given 
the existence of tabular medical data, such as laboratory re-
sults, there is a potential for increased research into machine 
learning models, which typically have simpler structures 
than neural network models, for use as FL local models. As 
a result, medical FL research is poised to be actively pursued 
and is likely to become a critical component of collaborative 
research across multiple institutions. 
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