1. International Diabetes Federation. IDF diabetes atlas. 6th ed. Brussels, Belgium: International Diabetes Federation; 2013.
2. Centers for Disease Control and Prevention. National Diabetes Fact Sheet: national estimates and general information on diabetes and prediabetes in the United States, 2011 [Internet]. Atlanta (GA): US Department of Health and Human Services, Centers for Disease Control and Prevention; 2011. cited at 2016 Mar 1. Available from:
http://www.cdc.gov/diabetes/pubs/pdf/ndfs_2011.pdf
3. Pei E, Li J, Lu C, Xu J, Tang T, Ye M, et al. Effects of lipids and lipoproteins on diabetic foot in people with type 2 diabetes mellitus: a meta-analysis. J Diabetes Complicat 2014;28(4):559-564. PMID:
24849711.
4. Zaugg SD, Dogbey G, Collins K, Reynolds S, Batista C, Brannan G, et al. Diabetes numeracy and blood glucose control: association with type of diabetes and source of care. Clin Diabetes 2014;32(4):152-157. PMID:
25646940.
5. Nielsen DS, Krych L, Buschard K, Hansen CH, Hansen AK. Beyond genetics: Influence of dietary factors and gut microbiota on type 1 diabetes. FEBS Lett 2014;588(22):4234-4243. PMID:
24746688.
6. Manzella D, Grella R, Abbatecola AM, Paolisso G. Repaglinide administration improves brachial reactivity in type 2 diabetic patients. Diabetes Care 2005;28(2):366-371. PMID:
15677794.
7. Zhuo X, Zhang P, Barker L, Albright A, Thompson TJ, Gregg E. The lifetime cost of diabetes and its implications for diabetes prevention. Diabetes Care 2014;37(9):2557-2564. PMID:
25147254.
8. Chavey A, Ah Kioon MD, Bailbe D, Movassat J, Portha B. Maternal diabetes, programming of beta-cell disorders and intergenerational risk of type 2 diabetes. Diabetes Metab 2014;40(5):323-330. PMID:
24948417.
9. Mohan D, Raj D, Shanthirani CS, Datta M, Unwin NC, Kapur A, et al. Awareness and knowledge of diabetes in Chennai: the Chennai Urban Rural Epidemiology Study [CURES-9]. J Assoc Physicians India 2005;53:283-287. PMID:
15987011.
10. Hadaegh F, Bozorgmanesh MR, Ghasemi A, Harati H, Saadat N, Azizi F. High prevalence of undiagnosed diabetes and abnormal glucose tolerance in the Iranian urban population: Tehran Lipid and Glucose Study. BMC Public Health 2008;8:176PMID:
18501007.
11. Ofman JJ, Badamgarav E, Henning JM, Knight K, Gano AD Jr, Levan RK, et al. Does disease management improve clinical and economic outcomes in patients with chronic diseases? A systematic review. Am J Med 2004;117(3):182-192. PMID:
15300966.
12. Baan CA, Ruige JB, Stolk RP, Witteman JC, Dekker JM, Heine RJ, et al. Performance of a predictive model to identify undiagnosed diabetes in a health care setting. Diabetes Care 1999;22(2):213-219. PMID:
10333936.
13. Asche C, LaFleur J, Conner C. A review of diabetes treatment adherence and the association with clinical and economic outcomes. Clin Ther 2011;33(1):74-109. PMID:
21397776.
15. Gray AR, MacDonell SG. A comparison of techniques for developing predictive models of software metrics. Inf Softw Technol 1997;39(6):425-437.
16. Narasingarao MR, Sridhar GR, Madhu K, Rao AA. A clinical decision support system using multi-layer perceptron neural network to predict quality of life in diabetes. J Assoc Physicians India 2010;4(1):127-133.
17. Karan O, Bayraktar C, Gumuskaya H, Karlik B. Diagnosing diabetes using neural networks on small mobile devices. Expert Syst Appl 2012;39(1):54-60.
18. Kang JO, Chung SH, Suh YM. Prediction of hospital charges for the cancer patients with data mining techniques. J Korean Soc Med Inform 2009;15(1):13-23.
19. Tahmasebi P, Hezarkhani A. A hybrid neural networksfuzzy logic-genetic algorithm for grade estimation. Comput Geosci 2012;42:18-27. PMID:
25540468.
20. Mahmoudabadi H, Izadi M, Menhaj MB. A hybrid method for grade estimation using genetic algorithm and neural networks. Comput Geosci 2009;13(1):91-101.
21. Cho SB. Fusion of neural networks with fuzzy logic and genetic algorithm. Integr Comput Aided Eng 2002;9(4):363-372.
22. Smith AD, Bolam JP. The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones. Trends Neurosci 1990;13(7):259-265. PMID:
1695400.
23. Wang C, Li L, Wang L, Ping Z, Flory MT, Wang G, et al. Evaluating the risk of type 2 diabetes mellitus using artificial neural network: an effective classification approach. Diabetes Res Clin Pract 2013;100(1):111-118. PMID:
23453177.