1. Di Somma S, Paladino L, Vaughan L, Lalle I, Magrini L, Magnanti M. Overcrowding in emergency department: an international issue. Intern Emerg Med 2015;10(2):171-175. PMID:
25446540.
2. Siciliani L, Moran V, Borowitz M. Measuring and comparing health care waiting times in OECD countries. Health Policy 2014;118(3):292-303. PMID:
25217838.
3. Barua B, Esmail N, Jackson T. The effect of wait times on mortality in Canada. Vancouver: Fraser Institute; 2014.
4. Richards JR, van der Linden MC, Derlet RW. Providing care in emergency department hallways: demands, dangers, and deaths. Adv Emerg Med 2014;2014:495219.
5. Cyganska M. The impact factors on the hospital high length of stay outliers. Procedia Econ Financ 2016;39:251-255.
6. Ithman MH, Goplarkrishna G, Beck NC, Das J, Petroski G. Predictors of length of stay in an acute psychiatric hospital. J Biosaf Health Educ 2014;2(2):1000119.
7. Pakzad H, Thevendran G, Penner MJ, Qian H, Younger A. Factors associated with longer length of hospital stay after primary elective ankle surgery for end-stage ankle arthritis. J Bone Joint Surg Am 2014;96(1):32-39. PMID:
24382722.
8. Gruenberg DA, Shelton W, Rose SL, Rutter AE, Socaris S, McGee G. Factors influencing length of stay in the intensive care unit. Am J Crit Care 2006;15(5):502-509. PMID:
16926372.
9. Clarke A, Rosen R. Length of stay. How short should hospital care be. Eur J Public Health 2001;11(2):166-170. PMID:
11420803.
10. Mak G, Grant WD, McKenzie JC, McCabe JB. Physicians, ability to predict hospital length of stay for patients admitted to the hospital from the emergency department. Emerg Med Int 2012;2012:824674PMID:
22319649.
11. Han J, Pei J, Kamber M. Data mining: concepts and techniques. Amsterdam: Morgan Kaufmann; 2012.
12. Jiang X, Qu X, Davis L. Using data mining to analyze patient discharge data for an urban hospital Proceedings of the 2010 International Conference on Data Mining; 2010 Jul 12-15. Las Vegas, NV: p. 139-144.
13. Rowan M, Ryan T, Hegarty F, O'Hare N. The use of artificial neural networks to stratify the length of stay of cardiac patients based on preoperative and initial postoperative factors. Artif Intell Med 2007;40(3):211-221. PMID:
17580112.
14. Tu JV, Guerriere MR. Use of a neural network as a predictive instrument for length of stay in the intensive care unit following cardiac surgery. Comput Biomed Res 1993;26(3):220-229. PMID:
8325002.
15. Hachesu PR, Ahmadi M, Alizadeh S, Sadoughi F. Use of data mining techniques to determine and predict length of stay of cardiac patients. Healthc Inform Res 2013;19(2):121-129. PMID:
23882417.
16. Miyata H, Hashimoto H, Horiguchi H, Matsuda S, Motomura N, Takamoto S. Performance of in-hospital mortality prediction models for acute hospitalization: hospital standardized mortality ratio in Japan. BMC Health Serv Res 2008;8:229PMID:
18990251.
17. Son YJ, Kim HG, Kim EH, Choi S, Lee SK. Application of support vector machine for prediction of medication adherence in heart failure patients. Healthc Inform Res 2010;16(4):253-259. PMID:
21818444.
18. Ahn M, Choi M, Kim Y. Factors associated with the timeliness of electronic nursing documentation. Healthc Inform Res 2016;22(4):270-276. PMID:
27895958.
19. Sushmita S, Khulbe G, asan A, Newman S, Ravindra P, Basu Roy S, et al. Predicting 30-day risk and cost of “All-Cause” hospital readmissions The Workshops at the 30th AAAI Conference on Artificial Intelligence: Expanding the Boundaries of Health Informatics Using AI; 2016 Feb 12-17. Phoenix, AZ.
20. Johnson AE, Pollard TJ, Shen L, Lehman LW, Feng M, Ghassemi M, et al. MIMIC-III, a freely accessible critical care database. Sci Data 2016;3:160035PMID:
27219127.
21. Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, Mark RG, et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 2000;101(23):E215-E220. PMID:
10851218.
22. Cots F, Elvira D, Castells X, Saez M. Relevance of outlier cases in case mix systems and evaluation of trimming methods. Health Care Manag Sci 2003;6(1):27-35. PMID:
12638924.
23. Freitas A, Silva-Costa T, Lopes F, Garcia-Lema I, Teixeira-Pinto A, Brazdil P, et al. Factors influencing hospital high length of stay outliers. BMC Health Serv Res 2012;12:265PMID:
22906386.
24. Jain AK, Murty MN, Flynn PJ. Data clustering: a review. ACM Comput Surv 1999;31(3):264-323.
25. Briand LC, Wieczorek I. Resource estimation in software engineering. In: Marciniak JJ, editors. Encyclopedia of software engineering. New York (NY): John Wiley & Sons Inc; 2002.
26. Conte SD, Dunsmore HE, Shen VY. Software engineering metrics and models. Redwood City (CA): Benjamin/Cummings Publishing; 1986.