2. Yoon JH, Lee RZ, Kim MJ. The relationship of self-rated health condition to stress recognition, health related habits, serum biochemical indices, and nutritional intakes in Korean healthy adults. Korean J Food Nutr 2017;30(1):83-95.
3. Jeon HG, Sim JM, Lee KC. An empirical analysis of effects of stress on relation between physical activity and health-related quality of life: results from KNHANES 2008 to 2013. J Korea Acad Ind Coop Soc 2015;16(8):5351-5363.
4. Hwang JM. Classification of health behaviors of Korean adults using physical activity, smoking, drinking and relationship with mental health. J Korea Soc Wellness 2016;11(4):369-379.
5. Lim CY, Kim KH. A Study on the assessment of stress using wireless ECG. J Korea Soc Comput Inf 2011;16(2):17-23.
6. Cho YC, Kim MS. Characteristics in HRV (heart rate variability), GSR (galvanic skin response) and skin temperature for stress estimate. J Korea Ind Inf Syst Res 2015;20(3):11-18.
7. Xu Q, Nwe TL, Guan C. Cluster-based analysis for personalized stress evaluation using physiological signals. IEEE J Biomed Health Inform 2015;19(1):275-281. PMID:
25561450.
8. Sani MM, Norhazman H, Omar HA, Zaini N, Ghani SA. Support vector machine for classification of stress subjects using EEG signals Proceedings of 2014 IEEE Conference on Systems, Process and Control (ICSPC); 2014 Apr 12-14. Kuala Lumpur, Malaysia; p. 127-131.
9. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A survey on deep learning in medical image analysis. Med Image Anal 2017;42:60-88. PMID:
28778026.
10. Hinton GE, Osindero S, Teh YW. A fast learning algorithm for deep belief nets. Neural Comput 2006;18(7):1527-1554. PMID:
16764513.
11. Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science 2006;313(5786):504-507. PMID:
16873662.
12. Lee H, Ekanadham C, Ng AY. Sparse deep belief net model for visual area V2. Adv Neural Inf Process Syst 2008;20:873-880.
13. Krizhevsky A, Hinton G. Learning multiple layers of features from tiny images [master's thesis]. Toronto: Department of Computer Science, University of Toronto; 2009.
14. Vincent P, Larochelle H, Bengio Y, Manzagol PA. Extracting and composing robust features with denoising autoencoders Proceedings of the 25th International Conference on Machine Learning; 2008 Jul 5-9. Helsinki, Finland; p. 1096-1103.
15. Dahl GE, Yu D, Deng L, Acero A. Context-dependent pre-trained deep neural networks for large vocabulary speech recognition. IEEE Trans Audio Speech Lang Process 2012;20(1):30-42.
16. Mishra C, Gupta DL. Deep machine learning and neural networks: an overview. Int J Hybrid Inf Technol 2016;9(11):401-414.
17. Abdel-Zaher AM, Eldeib AM. Breast cancer classification using deep belief networks. Expert Syst Appl 2016;46:139-144.
18. Tamilselvan P, Wang P. Failure diagnosis using deep belief learning based health state classification. Reliab Eng Syst Saf 2013;115:124-135.
19. Fakoor R, Ladhak F, Nazi A, Huber M. Using deep learning to enhance cancer diagnosis and classification Proceedings of the International Conference on Machine Learning (ICML); 2013 Jun 16-21. Atlanta, GA.
20. Korea Center for Disease Control and Prevention. The six Korea National Health & Nutrition Examination Survey 2013-2015 (KNHANES VI) [Internet]. Cheongju: Korea Center for Disease Control and Prevention; c2017. cited 2017 Oct 1. Available from:
http://knhanes.cdc.go.kr
25. DL4J. Deep learning for Java [Internet]. place unknown: place unknown: c2017. cited 2017 Oct 1. Available from:
https://deeplearning4j.org
27. Saito G, Lee BY. Deep learning from scratch. Daejeon: Hanbit Media; 2017. p. 103-119. p. 131-143.